scholarly journals Effects of deep cryogenic treatment on mechanical and tribological properties of AISI D3 tool steel

Friction ◽  
2015 ◽  
Vol 3 (3) ◽  
pp. 234-242 ◽  
Author(s):  
Nay Win Khun ◽  
Erjia Liu ◽  
Adrian Wei Yee Tan ◽  
D. Senthilkumar ◽  
Bensely Albert ◽  
...  
Author(s):  
Y. Arslan ◽  
I. Uygur ◽  
A. Jazdzewska

Recently, deep cryogenic treatment is performed to improve the mechanical responses (wear, hardness, fatigue, and thermal conductivity) of various steel components. Researchers have tried to evaluate the eco-friendly and nontoxic process to optimize the parameters. Cold-shearing punches used to manufacture various holes that undergo severe impact loading and wear in the metal forming process. This study concerns the effect of soaking time (24 hr, 36 hr) at liquid nitrogen temperature (−145 °C) during the deep cryogenic treatment on the microstructural changes which are carbide distribution and retained austenite percentage of AISI D3 tool steel punches. It was shown that the deep cryogenic treatment reduces retained austenite and enhanced uniform distribution of carbide particles. It is concluded that for significantly improved punch life and performance, it is an advisable application of 36 hr deep cryogenic treatment.


2013 ◽  
Vol 311 ◽  
pp. 477-481
Author(s):  
Yuh Ping Chang ◽  
Huann Ming Chou ◽  
Jeng Haur Horng ◽  
Li Ming Chu ◽  
Zi Wei Huang

The bad quality of machining surfaces caused by the micro wear of pressing parts has been a very big trouble for the engineers over the past decades. In order to decrease the surface wear, the technology of heat treatment is used popular. Many papers about the heat treatment technology had been proposed. Especially, the deep cryogenic treatment has been used widely for the purpose of wear-resistance in the industry. Moreover, the method of using variations of surface magnetization to monitor the dynamic tribological properties between the metal pairs has been applied successfully by the author. Therefore, this paper is base on the above statements to further investigate the tribological properties of the tool steel by deep cryogenic treatment. It can be clarified for effects of different deep cryogenic treatment temperatures on wear-resistance of the tool steel DC53. Besides, the purpose of better quality and faster product speed of the pressing process can then be obtained.


2018 ◽  
Vol 934 ◽  
pp. 100-104
Author(s):  
Yuan Ching Lin ◽  
Ji Wei Gong

In this investigation, the effects of different heat treatment conditions on the mechanical properties of high carbon tool steel (SK2) were explored. Experimental results indicated that immediately doing deep cryogenic treatment can effectively reduce retained austenite after quenching. The moment of the holding time for the cryogenic treatment was extended can promote the fine carbides precipitated, and thus increased its hardness. The results of X-ray diffraction showed that the carbides in the matrix included Fe3C and Fe7C3.The wear test results demonstrated that the specimen with Q-T1hr-C24hr-T1hr treatment has the highest wear resistance than the others, which was caused by the effect of several tempering processes to improve toughness of the matrix and to precipitate considerable quantities of the fine carbides.


Sign in / Sign up

Export Citation Format

Share Document