scholarly journals Tribological characteristics of friction stir processed graphite and tin/LM24 surface composites

Friction ◽  
2020 ◽  
Author(s):  
Vipin Sharma ◽  
Ujjwal Prakash ◽  
B. Venkata Manoj Kumar

AbstractFriction stir processing (FSP) is an emerging solid-state technique for preparing surface composites using various reinforcements. Ceramics and metallic particles are easily reinforced in a matrix by this technique. Surface composites made from an LM24 alloy reinforced with graphite and tin, with good wettability and material flow owing to the low melting point of tin, were fabricated by FSP at two rotational speeds of 1,400 and 1,000 rpm. Despite its low hardness, the graphite/LM24 surface composite fabricated at a higher rotational speed of 1,400 rpm exhibited better wear resistance. However, its frictional behavior was not significantly affected by the reinforcement. The fabricated surface composites with graphite and tin reinforcement as well as graphite-only reinforcement exhibited contradicting behaviors under sliding wear conditions. The post wear analysis indicated that abrasion, adhesion, layer formation, and delamination occurred on the composite surfaces.

2014 ◽  
Vol 592-594 ◽  
pp. 234-239 ◽  
Author(s):  
A. Thangarasu ◽  
N. Murugan ◽  
I. Dinaharan ◽  
S.J. Vijay

Friction stir processing (FSP) is as a novel modifying technique to synthesize surface composites. An attempt has been made to synthesis AA6082/TiC surface composite using FSP and to analyze the effect of tool rotational speed on microstructure and microhardness of the same. The tool rotational speed was varied from 800 rpm to 1600 rpm in steps of 400 rpm. The traverse speed, axial force, groove width and tool pin profile were kept constant. Scanning electron microscopy was employed to study the microstructure of the fabricated surface composites. The results indicated that the tool rotational speed significantly influenced the area of the surface composite and distribution of TiC particles. Higher rotational speed provided homogenous distribution of TiC particles while lower rotational speed caused poor distribution of TiC particles in the surface composite. The effect of the tool rotational speed on microhardness is also reported in this paper.


2016 ◽  
Vol 879 ◽  
pp. 1369-1374
Author(s):  
P. Naresh ◽  
Adepu Kumar ◽  
M. Krishna Kishore

This work deals with the effect of volume percentage of nanoreinforcement to fabricate nanosurface composite by Friction Stir Processing (FSP) and also studied the role of tool rotational speed and traverse speed to get the defect free condition to fabricate successful surface composite. The material flow pattern, dispersion of the reinforcement particles in the stir zone was examined. From the phase/volume fraction analysis, it was observed that the nanoAl2O3 particles were well dispersed in the stir zone. The results indicate that the better microstructural, mechanical properties were obtained at 1150rpm /15mm/min condition. A significant improvement in microhardness was exhibited by surface nanocomposite as compared to the as - received aluminum.


2020 ◽  
pp. 2050057
Author(s):  
MORTEZA SHAMANIAN ◽  
MOHAMMAD REZA NASRESFAHANI ◽  
EBRAHIM BAHRAMI ◽  
HOSSEIN EDRIS

In low-strength metals, the main purpose of enhancing surface properties is to increase the abrasion resistance. One of the new methods for improving the microstructure of the surface layer of metals is the surface composite. In this research, the friction stir processing (FSP) was used to develop an aluminum–nickel intermetallic surface composite. Aluminum 2024 alloy and Ni powder were used as the matrix and reinforcement agent, respectively. Comparison of composite and non-composite FSP samples indicates that adding reinforcements improves the wear resistance of a monolithic metal in all condition. Also, the wear resistance of fabricated composites using activated Al–Ni powder is higher than the others due to the presence of Al3Ni2 and Al3Ni intermetallic compounds. At low traverse speed of the FSP, powder agglomeration occurs, and the powders are not uniformly distributed, as a result, the friction coefficient rises. SEM micrographs of scratched particles of activated composite confirm the delamination mechanism in the wear stable stage.


Author(s):  
Piyush Gulati ◽  
A. Nihal ◽  
Dinesh Kumar Shukla ◽  
Jaiinder Preet Singh ◽  
Harpinder Singh ◽  
...  

2021 ◽  
Vol 309 ◽  
pp. 01150
Author(s):  
Anubhav Sharma ◽  
Sachin Maheshwari ◽  
Pradeep Khanna

Newer materials with unique properties are needed to cater the ever-increasing industrial demands to meet new challenges concerning technological advancements. Quest for special materials and processes is prevalent as conventional materials fail to level up. Composite materials promisingly bridge this gap by providing controllable properties at reasonable costs. Their scope of application can further be drastically enhanced by subjecting them to special surface processing treatments. Friction stir processing (FSP) is one such promising process that can meet the stringent applicational demands. Composites are increasingly being used in industries for properties like high strength to weight ratio, increased hardness, stiffness, ductility, corrosion resistance, etc. FSP, a solid-state material modification technique, has proved its caliber in surface composite fabrication. Some attention-seeking advantages of FSP include peerless efficiency, less tool wear rate, and ability to modify material locally are some of many attention-seeking advantages. Despite being cost-effective FSP also manages to eliminate the drawbacks of the conventional manufacturing process. FSP reinforces a special material into the parent material surface to attain specific properties. Properties so developed depend on parameters like: tool geometry, traverse speed, rotation speed, number of passes etc. The present paper aims to review comprehensive information on fabrication of surface composites by FSP, process parameters, properties, industrial applications, and future scope. Key Words: Friction stir processing surface processing treatments surface composites material modification process parameters.


Sign in / Sign up

Export Citation Format

Share Document