A fully coupled particle method for dynamic analysis of saturated soil

Author(s):  
J. L. Mroginski ◽  
H. G. Castro ◽  
J. M. Podestá ◽  
P. A. Beneyto ◽  
A. R. Anonis

2017 ◽  
Vol 23 (10) ◽  
pp. 1156-1177 ◽  
Author(s):  
Min Zhang ◽  
Wei Shang ◽  
Xinghua Wang ◽  
Y. Frank Chen




2017 ◽  
Vol 107 ◽  
pp. 604-619 ◽  
Author(s):  
Zhengshun Cheng ◽  
Helge Aagaard Madsen ◽  
Zhen Gao ◽  
Torgeir Moan


Author(s):  
Y. H. Bae ◽  
M. H. Kim

In the present study, a numerical simulation tool has been applied for the time-domain turbine-floater-tether fully-coupled dynamic analysis of a FOWT. The fully coupled dynamic analysis includes aero-blade-tower dynamics and control, mooring dynamics, and platform motions. In particular, the effects of second-order sum-frequency wave excitations on the coupled dynamic analysis are investigated. The fully coupled simulations with full blade operation are compared with those with parked condition (without blade rotation). For this purpose, a mono-column TLP with 5MW turbine in 200m water depth is selected as an example. The time histories and spectra of the FOWT motions and accelerations as well as tether top-tensions are presented for the given random collinear wind-wave condition. The shift of original floater natural frequencies due to the inclusion of tower flexural modes is demonstrated. The increase of aero damping in the case of rotating blades is also explained. The second-order sum-frequency wave loading introduces high-frequency excitations near pitch-roll resonance frequencies or lowest tower flexural modes. Its effects are more clearly seen in the blade-parked condition than the blade-fully-operational condition. The increased high-frequency responses may significantly increase tower-top accelerations and accumulated fatigue.



2019 ◽  
Author(s):  
◽  
Yu-Chen Su

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT REQUEST OF AUTHOR.] In computational mechanics, different numerical approaches and simulation scales may lead to different results. It is because each approach has its own solution scheme feature, such as the governing equation, forcing function, and integration algorithm, for the specific scale including the nanoscale, mesoscale, and macroscale. Recently, a particle method that is the material point method (MPM) has become a popular research topic at macroscale due to its advantage combining the Eulerian and Lagrangian descriptions. However, the MPM has not been evaluated in a systematic manner for the fully coupled thermodynamic fluid-structure interaction (FSI) cases. Since the constitutive models and heat transfer in solid and fluid materials are quite different, a fully coupled computational scheme is designed in this dissertation for simulating the FSI with the MPM, in which the governing equations for both solid and fluid material points are related to each other. Additionally, the MPM has been upgraded to the generalized interpolation MPM (GIMP), also described in this work, for solving the problems with large deformation. At nanoscale, the object is usually divided by atoms or molecules. Therefore, another computational particle method, molecular dynamics (MD), has been widely utilized for simulating the movements of atoms or molecules. Although MD is an accurate tool at nanoscale, it would cost numerous computational resources. To obtain similar nanoscale information with less cost, a developed coarse-grained MD (CG-MD), which traverses the time and spatial scales, is introduced, verified, and validated in this dissertation. Although the MPM (or GIMP) and MD both belong to particle methods, their forcing functions are different, namely, they are continuous and discrete forcing functions for MPM and MD, respectively. With these similarity and difference, a series of mechanical simulations involving large deformation by using the GIMP, MD, and CG-MD were conducted and discussed in this dissertation to investigate the failure evolution at different simulation scales.



2011 ◽  
Vol 71-78 ◽  
pp. 3292-3296
Author(s):  
Jun Hu ◽  
Xu Ling Xu

The coupled 3D Dynamic Mechanical/Fluid is performed for the Nuozhadu earth and rock-filled dam by FLAC3D, but literature on the fully coupled of fluid-solid under earthquake is not too much. This paper gives a good example of applying FLAC3D to do the fully coupled simulation, and after a system in mechanical and fluid is got, the dynamic simulation can be done. A more accurate estimation of pore water pressure and the distribution of acceleration and irrecoverable displacement of the dam under dynamic are obtained. The result shows that permanent displacement would occur in the potential slide mass of the slope under earthquake. Finally the method to improve the slope stability is suggested. The results provide important references to the design.



Géotechnique ◽  
2011 ◽  
Vol 61 (7) ◽  
pp. 549-563 ◽  
Author(s):  
G. ELIA ◽  
A. AMOROSI ◽  
A.H.C. CHAN ◽  
M.J. KAVVADAS


Sign in / Sign up

Export Citation Format

Share Document