Carbon Dioxide and Methane Fluxes from Various Vegetation Communities of a Natural Tropical Freshwater Wetland in Different Seasons

Author(s):  
David Were ◽  
Frank Kansiime ◽  
Tadesse Fetahi ◽  
Thomas Hein
2007 ◽  
Vol 4 (6) ◽  
pp. 985-1003 ◽  
Author(s):  
M. K. van der Molen ◽  
J. van Huissteden ◽  
F. J. W. Parmentier ◽  
A. M. R. Petrescu ◽  
A. J. Dolman ◽  
...  

Abstract. Carbon dioxide and methane fluxes were measured at a tundra site near Chokurdakh, in the lowlands of the Indigirka river in north-east Siberia. This site is one of the few stations on Russian tundra and it is different from most other tundra flux stations in its continentality. A suite of methods was applied to determine the fluxes of NEE, GPP, Reco and methane, including eddy covariance, chambers and leaf cuvettes. Net carbon dioxide fluxes were high compared with other tundra sites, with NEE=−92 g C m−2 yr−1, which is composed of an Reco=+141 g C m−2 yr−1 and GPP=−232 g C m−2 yr−1. This large carbon dioxide sink may be explained by the continental climate, that is reflected in low winter soil temperatures (−14°C), reducing the respiration rates, and short, relatively warm summers, stimulating high photosynthesis rates. Interannual variability in GPP was dominated by the frequency of light limitation (Rg<200 W m−2), whereas Reco depends most directly on soil temperature and time in the growing season, which serves as a proxy of the combined effects of active layer depth, leaf area index, soil moisture and substrate availability. The methane flux, in units of global warming potential, was +28 g C-CO2e m−2 yr−1, so that the greenhouse gas balance was −64 g C-CO2e m−2 yr−1. Methane fluxes depended only slightly on soil temperature and were highly sensitive to hydrological conditions and vegetation composition.


2021 ◽  
Author(s):  
Md Abdul Halim ◽  
Juliana Vantellingen ◽  
Adam S. Gorgolewski ◽  
William K. Rose ◽  
Jennifer A. P. Drake ◽  
...  

2021 ◽  
Author(s):  
Lutz Beckebanze ◽  
Zoé Rehder ◽  
David Holl ◽  
Charlotta Mirbach ◽  
Christian Wille ◽  
...  

Abstract. Arctic permafrost landscapes have functioned as a global carbon sink for millennia. These landscapes are very heterogeneous, and the omnipresent waterbodies are a carbon source within them. Yet, only a few studies focus on the impact of these waterbodies on the landscape carbon budget. We compare carbon dioxide and methane fluxes from small waterbodies to fluxes from the surrounding tundra using eddy covariance measurements from a tower located between a large pond and semi-terrestrial vegetated tundra. When taking the open-water areas of small waterbodies into account, the carbon dioxide sink strength of the landscape was reduced by 11 %. While open-water methane emissions were similar to the tundra emissions, some parts of the studied pond's shoreline exhibited much higher emissions, underlining the high spatial variability of methane emissions. We conclude that gas fluxes from small waterbodies can contribute significantly to the carbon budget of arctic tundra landscapes. Consequently, changes in arctic hydrology and the concomitant changes in the waterbody distribution may substantially impact the overall carbon budget of the Arctic.


2019 ◽  
Vol 124 (7) ◽  
pp. 1781-1798 ◽  
Author(s):  
Scott Zolkos ◽  
Suzanne E. Tank ◽  
Robert G. Striegl ◽  
Steven V. Kokelj

2019 ◽  
Vol 25 (6) ◽  
pp. 1967-1981 ◽  
Author(s):  
Higo J. Dalmagro ◽  
Paulo H. Zanella de Arruda ◽  
George L. Vourlitis ◽  
Michael J. Lathuillière ◽  
José de S. Nogueira ◽  
...  

2019 ◽  
Vol 11 (2) ◽  
pp. 380-389
Author(s):  
C. Alvarez-Bastida ◽  
M. Solache-Ríos ◽  
I. Linares-Hernández ◽  
G. Vázquez-Mejía ◽  
G. Fonseca-Montes de Oca ◽  
...  

Abstract The increase of CO2 in the atmosphere may produce some effects on drinking water because water tends to naturally capture CO2 species. The main purpose was the study of the impact of capture of free CO2 and its transformation to carbonic acid (H2CO3) and bicarbonate ions (HCO−3). The study used a Tillmans equilibrium diagram obtained from the modified Mojmir Mach model as a function of water temperature and considered the effects on anion and cation composition. Three wells located in different zones were selected, with similar characteristics (capture of CO2). Samples were taken in different seasons of the year and the amount of CO2 in the drinking water was calculated. It was found that with increasing concentrations of free CO2 the pH decreases, and this process makes the water acid and susceptible to dissolve some elements (Ca, Na, K, Si) and other species (HCO−3). The capture of CO2 has important effects on the anion and cation composition of drinking water and on the variation of pH by more than one unit, which may affect the health of consumers. The method presented in this study is an excellent user-friendly alternative to determine the impact of natural capture of total CO2 by water.


Sign in / Sign up

Export Citation Format

Share Document