scholarly journals Three factor authentication system with modified ECC based secured data transfer: untrusted cloud environment

Author(s):  
Dilip Venkata Kumar Vengala ◽  
D. Kavitha ◽  
A. P. Siva Kumar

AbstractCloud computing (CC) is a technology that delivers its service by means of the internet. In the modern scenario, cloud storage services have gained attention. The cloud environment confronts data breaches expansively in cloud storage, which might bring about the disclosure of personal in addition to corporate data. Thus, the requirement arises for the creation of a more foremost authentication system. Customary authentication schemes depend on techniques, like Password Authentications Protocol (PAP), Challenge Handshakes Authentication Protocols (CHAP), as well as One-Time Pads (OTP), which are often susceptible to malevolent attacks as well as security threats. To shun such issues, this paper proposed a Modified ECC centred secure data transfer and a ‘3’-factor authentication scheme in the untrusted cloud environment. The proposed work comprises ‘3’ steps: authentication, data compression, and safe data transfer. In the authentication phase, the SHA-512 algorithm along with CCP is utilized. After that, the user-uploaded data is compressed utilizing CHA on the server-side. Next, MECC encrypts the compressed data, and then, safely uploaded it to the cloud server (CS). In the investigational appraisal, the proposed work is contrasted with the prevailing methods. The outcomes proved that the proposed work renders better security than the prevailing methods.

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Won-Bin Kim ◽  
Daehee Seo ◽  
Donghyun Kim ◽  
Im-Yeong Lee

In general, ID-based proxy reencryption (IBPRE) includes data transfer in a 1 : 1 manner between a sender and receiver. Therefore, only the data owner has the authority to decrypt or reencrypt the data that is encrypted with his/her public key. However, in an environment with data self-sovereignty, such as an enterprise IoT-cloud environment, the data are directly managed by cloud once data is uploaded from user-controlled IoT devices. In such a situation, there is no way of sharing data if the data owner has no access over the data due to being outside the workplace and other issues. In this study, to solve this problem, data can be shared even when the data cannot be accessed by delegating the authority of the data owner to generate the reencryption key to other users. In addition, by solving the security threats that may appear in this process, data sharing can be performed securely and efficiently in the corporate environment.


2014 ◽  
Vol 687-691 ◽  
pp. 2913-2916
Author(s):  
Xiao Kun

For the data security threats caused by out sourcing model and shared vulnerability, and base on user data in static characteristics of cloud storage services and the dynamic nature of cloud computing, it requires to propose corresponding data security protection mechanisms, in addition, in order to make the mechanism work normally, we propose a program which can be trusted and can be garnered and user can test, offer the recoverability of data and the integrity verification of data and the accountability leak of data.


The challenging task is protecting the data which are uploaded to the cloud becomes bigger worries in a cloud environment system. In this type of security is needed for monitoring of data access in a cloud environment and is getting more and more attention in recent days. Few strategies which can be afford for top-secret and an unknown authentication for delicate information and it is more efficient than doing the encrypting data first and then sign or doing the sign first then encrypting the data. However, in so many previous work, delicate information of data users can be reveal to authority, and only the authority is responsible to answer to that type of attribute management and generation of key in the system. The proposed system states that confidentiality and protective of data access control over the cipher text scheme based on cloud security. It is provide a control measure, attribute confidentiality and guard the data’s of user concurrently in a multiple authority cloud system. Both the attributes of designcryptor and signcryptor can be kept secret by not knowing to the authorities and cloud storage server. Besides, decryption in the clouds for users as becomes meaningfully reduced by outsourcing the unwanted bilinear pairing process to the cloud server without humiliating the attribute privacy. The planned scheme is confirmed for protecting the standard model and has the skill to provide top secret, unforged, unknown authentication, and verifiability of public. The security analysis which are relating to comparison of difficulty and results of execution will indicate that the proposed system has the capacity to balance the security issues with respect to computation in hypothetical efficiency.


2018 ◽  
pp. 208-218
Author(s):  
Mohd Rizuan Baharon ◽  
Mohd Faizal Abdollah ◽  
Nur Azman Abu ◽  
Zaheera Zainal Abidin ◽  
Ariff Idris

Video Transcoding is one of the recent services available online nowadays provided by the clouds to enable a user to convert a video format from one into another in a very convenient way. To transcode a video, all of the video contents need to be uploaded to the cloud storage. However, outsourcing video contents that may contain sensitive information do not guarantee the video security and privacy as the clouds have the ability to access them. Thus, in this paper, an enhanced homomorphic encryption scheme is proposed to allow massive amount of frames to be transcoded by the cloud server in a secure manner. This scheme encrypts integers rather than individual bits so as to improve the scheme’s efficiency. With the aid of a proposed process for multiple parties to communicate securely, the efficiency of the scheme is thoroughly evaluated and compared with related works. The result shows that our scheme offers much better efficiency, which makes it more suitable for operating the video transcoding in cloud environment.


2019 ◽  
Vol 15 (10) ◽  
pp. 155014771987899 ◽  
Author(s):  
Changsong Yang ◽  
Xiaoling Tao ◽  
Feng Zhao

With the rapid development of cloud storage, more and more resource-constraint data owners can employ cloud storage services to reduce the heavy local storage overhead. However, the local data owners lose the direct control over their data, and all the operations over the outsourced data, such as data transfer and deletion, will be executed by the remote cloud server. As a result, the data transfer and deletion have become two security issues because the selfish remote cloud server might not honestly execute these operations for economic benefits. In this article, we design a scheme that aims to make the data transfer and the transferred data deletion operations more transparent and publicly verifiable. Our proposed scheme is based on vector commitment (VC), which is used to deal with the problem of public verification during the data transfer and deletion. More specifically, our new scheme can provide the data owner with the ability to verify the data transfer and deletion results. In addition, by using the advantages of VC, our proposed scheme does not require any trusted third party. Finally, we prove that the proposed scheme not only can reach the expected security goals but also can satisfy the efficiency and practicality.


Author(s):  
K.Makanyadevi, Et. al.

In recent years there are many researchers conducted regarding with cloud storage benefits and its efficiency improvements, but all are raising a question regarding the effectiveness and privacy. The effectiveness of the cloud storage system purely depends on the storage capacity and responsiveness of the server, in which the size of the data is large automatically the responsiveness of the storage server goes down. To avoid this issue many researchers found a lots of solution such as multiple cloud server placements, the local cloud farm fixation and so on. But all are coming too struck with the privacy issues and the security threats are more in the case of such things. These issues need to be resolved with one powerful mechanism as well as providing a good storage mechanism without any security threats. In this paper, a healthcare application is taken into consideration and introduce a new fog based cloud storage system is designed such as Intelligent Fog based Cloud Strategy using Edge Devices (IFCSED), in which this Fog Computing process provides an efficient health data storage structure to the cloud server to maintain the high priority records without considering on regular or non-prioritized records. This proposed strategy follows Edge-based Fog assistance to identify the healthcare data priority utilizing analyzing the records, identify the priority level and classify those priority records from the data and pass that to the remote cloud server as well as keep the remaining non-prioritized records into the local fog server. The fog server data can be back up with every point of interval using data backup logics. These backup assures the data protection and the integrity on the storage medium as well as the proposed approach of IFCSED eliminates the processing delay by using time complexity estimations. The data which is coming from Internet of Things (IoT) based real-world health record will be acquired by using controllers and other related devices, which will be delivered to the Edge Devices for manipulation. In this Edge processing device accumulates the incoming health data and classifies that based on the prioritization logic. The health sensor data which is coming in regular interval with normal sensor values are considered to be the regular non-prioritized data and the health sensor data coming up with some abnormal contents such as mismatched heart rate, increased pressure level and so on are considered as a the prioritized record. The sensor assisted health data will low-priority will be moved to the fog server, which is locally maintained into the environment itself and the sensor assisted health data coming up with high priority will be moved into the remote cloud server. The proposed approach assures the time efficiency, reduction in data loss, data integrity and the storage efficiency, as well as these things, will be proved over the resulting sections with proper graphical results.  


Author(s):  
S. K. Saravanan ◽  
G. N. K. Suresh Babu

In contemporary days the more secured data transfer occurs almost through internet. At same duration the risk also augments in secure data transfer. Having the rise and also light progressiveness in e – commerce, the usage of credit card (CC) online transactions has been also dramatically augmenting. The CC (credit card) usage for a safety balance transfer has been a time requirement. Credit-card fraud finding is the most significant thing like fraudsters that are augmenting every day. The intention of this survey has been assaying regarding the issues associated with credit card deception behavior utilizing data-mining methodologies. Data mining has been a clear procedure which takes data like input and also proffers throughput in the models forms or patterns forms. This investigation is very beneficial for any credit card supplier for choosing a suitable solution for their issue and for the researchers for having a comprehensive assessment of the literature in this field.


Author(s):  
D. Sowmya ◽  
S. Sivasankaran

In the cloud environment, it is difficult to provide security to the monolithic collection of data as it is easily accessed by breaking the algorithms which are based on mathematical computations and on the other hand, it takes much time for uploading and downloading the data. This paper proposes the concept of implementing quantum teleportation i.e., telecommunication + transportation in the cloud environment for the enhancement of cloud security and also to improve speed of data transfer through the quantum repeaters. This technological idea is extracted from the law of quantum physics where the particles say photons can be entangled and encoded to be teleported over large distances. As the transfer of photons called qubits allowed to travel through the optical fiber, it must be polarized and encoded with QKD (Quantum Key Distribution) for the security purpose. Then, for the enhancement of the data transfer speed, qubits are used in which the state of quantum bits can be encoded as 0 and 1 concurrently using the Shors algorithm. Then, the Quantum parallelism will help qubits to travel as fast as possible to reach the destination at a single communication channel which cannot be eavesdropped at any point because, it prevents from creating copies of transmitted quantum key due to the implementation of no-cloning theorem so that the communication parties can only receive the intended data other than the intruders.


Sign in / Sign up

Export Citation Format

Share Document