scholarly journals Multi-objective particle swarm optimization with R2 indicator and adaptive method

Author(s):  
Qinghua Gu ◽  
Mengke Jiang ◽  
Song Jiang ◽  
Lu Chen

AbstractMulti-objective particle swarm optimization algorithms encounter significant challenges when tackling many-objective optimization problems. This is mainly because of the imbalance between convergence and diversity that occurs when increasing the selection pressure. In this paper, a novel adaptive MOPSO (ANMPSO) algorithm based on R2 contribution and adaptive method is developed to improve the performance of MOPSO. First, a new global best solutions selection mechanism with R2 contribution is introduced to select leaders with better diversity and convergence. Second, to obtain a uniform distribution of particles, an adaptive method is used to guide the flight of particles. Third, a re-initialization strategy is proposed to prevent particles from trapping into local optima. Empirical studies on a large number (64 in total) of problem instances have demonstrated that ANMPSO performs well in terms of inverted generational distance and hyper-volume metrics. Experimental studies on the practical application have also revealed that ANMPSO could effectively solve problems in the real world.

2021 ◽  
Author(s):  
Moritz Mühlenthaler ◽  
Alexander Raß ◽  
Manuel Schmitt ◽  
Rolf Wanka

AbstractMeta-heuristics are powerful tools for solving optimization problems whose structural properties are unknown or cannot be exploited algorithmically. We propose such a meta-heuristic for a large class of optimization problems over discrete domains based on the particle swarm optimization (PSO) paradigm. We provide a comprehensive formal analysis of the performance of this algorithm on certain “easy” reference problems in a black-box setting, namely the sorting problem and the problem OneMax. In our analysis we use a Markov model of the proposed algorithm to obtain upper and lower bounds on its expected optimization time. Our bounds are essentially tight with respect to the Markov model. We show that for a suitable choice of algorithm parameters the expected optimization time is comparable to that of known algorithms and, furthermore, for other parameter regimes, the algorithm behaves less greedy and more explorative, which can be desirable in practice in order to escape local optima. Our analysis provides a precise insight on the tradeoff between optimization time and exploration. To obtain our results we introduce the notion of indistinguishability of states of a Markov chain and provide bounds on the solution of a recurrence equation with non-constant coefficients by integration.


Mekatronika ◽  
2021 ◽  
Vol 3 (1) ◽  
pp. 35-43
Author(s):  
K. M. Ang ◽  
Z. S. Yeap ◽  
C. E. Chow ◽  
W. Cheng ◽  
W. H. Lim

Different variants of particle swarm optimization (PSO) algorithms were introduced in recent years with various improvements to tackle different types of optimization problems more robustly. However, the conventional initialization scheme tends to generate an initial population with relatively inferior solution due to the random guess mechanism. In this paper, a PSO variant known as modified PSO with chaotic initialization scheme is introduced to solve unconstrained global optimization problems more effectively, by generating a more promising initial population. Experimental studies are conducted to assess and compare the optimization performance of the proposed algorithm with four existing well-establised PSO variants using seven test functions. The proposed algorithm is observed to outperform its competitors in solving the selected test problems.


2021 ◽  
Author(s):  
Ahlem Aboud ◽  
Nizar Rokbani ◽  
Seyedali Mirjalili ◽  
Abdulrahman M. Qahtani ◽  
Omar Almutiry ◽  
...  

<p>Multifactorial Optimization (MFO) and Evolutionary Transfer Optimization (ETO) are new optimization challenging paradigms for which the multi-Objective Particle Swarm Optimization system (MOPSO) may be interesting despite limitations. MOPSO has been widely used in static/dynamic multi-objective optimization problems, while its potentials for multi-task optimization are not completely unveiled. This paper proposes a new Distributed Multifactorial Particle Swarm Optimization algorithm (DMFPSO) for multi-task optimization. This new system has a distributed architecture on a set of sub-swarms that are dynamically constructed based on the number of optimization tasks affected by each particle skill factor. DMFPSO is designed to deal with the issues of handling convergence and diversity concepts separately. DMFPSO uses Beta function to provide two optimized profiles with a dynamic switching behaviour. The first profile, Beta-1, is used for the exploration which aims to explore the search space toward potential solutions, while the second Beta-2 function is used for convergence enhancement. This new system is tested on 36 benchmarks provided by the CEC’2021 Evolutionary Transfer Multi-Objective Optimization Competition. Comparatives with the state-of-the-art methods are done using the Inverted General Distance (IGD) and Mean Inverted General Distance (MIGD) metrics. Based on the MSS metric, this proposal has the best results on most tested problems.</p>


Author(s):  
Mohammad Reza Farmani ◽  
Jafar Roshanian ◽  
Meisam Babaie ◽  
Parviz M Zadeh

This article focuses on the efficient multi-objective particle swarm optimization algorithm to solve multidisciplinary design optimization problems. The objective is to extend the formulation of collaborative optimization which has been widely used to solve single-objective optimization problems. To examine the proposed structure, racecar design problem is taken as an example of application for three objective functions. In addition, a fuzzy decision maker is applied to select the best solution along the pareto front based on the defined criteria. The results are compared to the traditional optimization, and collaborative optimization formulations that do not use multi-objective particle swarm optimization. It is shown that the integration of multi-objective particle swarm optimization into collaborative optimization provides an efficient framework for design and analysis of hierarchical multidisciplinary design optimization problems.


Author(s):  
Sotirios K. Goudos ◽  
Zaharias D. Zaharis ◽  
Konstantinos B. Baltzis

Particle Swarm Optimization (PSO) is an evolutionary optimization algorithm inspired by the social behavior of birds flocking and fish schooling. Numerous PSO variants have been proposed in the literature for addressing different problem types. In this chapter, the authors apply different PSO variants to common antenna and microwave design problems. The Inertia Weight PSO (IWPSO), the Constriction Factor PSO (CFPSO), and the Comprehensive Learning Particle Swarm Optimization (CLPSO) algorithms are applied to real-valued optimization problems. Correspondingly, discrete PSO optimizers such as the binary PSO (binPSO) and the Boolean PSO with velocity mutation (BPSO-vm) are used to solve discrete-valued optimization problems. In case of a multi-objective optimization problem, the authors apply two multi-objective PSO variants. Namely, these are the Multi-Objective PSO (MOPSO) and the Multi-Objective PSO with Fitness Sharing (MOPSO-fs) algorithms. The design examples presented here include microwave absorber design, linear array synthesis, patch antenna design, and dual-band base station antenna optimization. The conclusion and a discussion on future trends complete the chapter.


2018 ◽  
Vol 9 (4) ◽  
pp. 71-96 ◽  
Author(s):  
Swapnil Prakash Kapse ◽  
Shankar Krishnapillai

This article demonstrates the implementation of a novel local search approach based on Utopia point guided search, thus improving the exploration ability of multi- objective Particle Swarm Optimization. This strategy searches for best particles based on the criteria of seeking solutions closer to the Utopia point, thus improving the convergence to the Pareto-optimal front. The elite non-dominated selected particles are stored in an archive and updated at every iteration based on least crowding distance criteria. The leader is chosen among the candidates in the archive using the same guided search. From the simulation results based on many benchmark tests, the new algorithm gives better convergence and diversity when compared to existing several algorithms such as NSGA-II, CMOPSO, SMPSO, PSNS, DE+MOPSO and AMALGAM. Finally, the proposed algorithm is used to solve mechanical design based multi-objective optimization problems from the literature, where it shows the same advantages.


2014 ◽  
Vol 2014 ◽  
pp. 1-16 ◽  
Author(s):  
Xiaobing Yu ◽  
Jie Cao ◽  
Haiyan Shan ◽  
Li Zhu ◽  
Jun Guo

Particle swarm optimization (PSO) and differential evolution (DE) are both efficient and powerful population-based stochastic search techniques for solving optimization problems, which have been widely applied in many scientific and engineering fields. Unfortunately, both of them can easily fly into local optima and lack the ability of jumping out of local optima. A novel adaptive hybrid algorithm based on PSO and DE (HPSO-DE) is formulated by developing a balanced parameter between PSO and DE. Adaptive mutation is carried out on current population when the population clusters around local optima. The HPSO-DE enjoys the advantages of PSO and DE and maintains diversity of the population. Compared with PSO, DE, and their variants, the performance of HPSO-DE is competitive. The balanced parameter sensitivity is discussed in detail.


2012 ◽  
Vol 201-202 ◽  
pp. 283-286
Author(s):  
Chen Yang Chang ◽  
Jing Mei Zhai ◽  
Qin Xiang Xia ◽  
Bin Cai

Aiming at addressing optimization problems of complex mathematical model with large amount of calculation, a method based on support vector machine and particle swarm optimization for structure optimization design was proposed. Support Vector Machine (SVM) is a powerful computational tool for problems with nonlinearity and could establish approximate structures model. Grey relational analysis was utilized to calculate the coefficient between target parameters in order to change the multi-objective optimization problem into a single objective one. The reconstructed models were solved by Particle Swam Optimization (PSO) algorithm. A slip cover at medical treatment was adopted as an example to illustrate this methodology. Appropriate design parameters were selected through the orthogonal experiment combined with ANSYS. The results show this methodology is accurate and feasible, which provides an effective strategy to solve complex optimization problems.


2011 ◽  
Vol 383-390 ◽  
pp. 7208-7213
Author(s):  
De Kun Tan

To overcome the shortage of standard Particle Swarm Optimization(SPSO) on premature convergence, Quantum-behaved Particle Swarm Optimization (QPSO) is presented to solve engineering constrained optimization problem. QPSO algorithm is a novel PSO algorithm model in terms of quantum mechanics. The model is based on Delta potential, and we think the particle has the behavior of quanta. Because the particle doesn’t have a certain trajectory, it has more randomicity than the particle which has fixed path in PSO, thus the QPSO more easily escapes from local optima, and has more capability to seek the global optimal solution. In the period of iterative optimization, outside point method is used to deal with those particles that violate the constraints. Furthermore, compared with other intelligent algorithms, the QPSO is verified by two instances of engineering constrained optimization, experimental results indicate that the algorithm performs better in terms of accuracy and robustness.


Sign in / Sign up

Export Citation Format

Share Document