Multi-objective particle swarm optimization with R2 indicator and adaptive method
AbstractMulti-objective particle swarm optimization algorithms encounter significant challenges when tackling many-objective optimization problems. This is mainly because of the imbalance between convergence and diversity that occurs when increasing the selection pressure. In this paper, a novel adaptive MOPSO (ANMPSO) algorithm based on R2 contribution and adaptive method is developed to improve the performance of MOPSO. First, a new global best solutions selection mechanism with R2 contribution is introduced to select leaders with better diversity and convergence. Second, to obtain a uniform distribution of particles, an adaptive method is used to guide the flight of particles. Third, a re-initialization strategy is proposed to prevent particles from trapping into local optima. Empirical studies on a large number (64 in total) of problem instances have demonstrated that ANMPSO performs well in terms of inverted generational distance and hyper-volume metrics. Experimental studies on the practical application have also revealed that ANMPSO could effectively solve problems in the real world.