Simulation and Experimental Study of the Influence of Temperature Stress on the Intermittent Fault of an Electrical Connector

2019 ◽  
Vol 43 (5) ◽  
pp. 587-597
Author(s):  
L. Kehong ◽  
Z. Zunqing ◽  
Z. Zaizhong
Critical Care ◽  
10.1186/cc174 ◽  
1998 ◽  
Vol 2 (Suppl 1) ◽  
pp. P044
Author(s):  
Ma Qing ◽  
MC Seghaye ◽  
J Vazquez ◽  
RG Grabitz ◽  
B Klosterhalfen ◽  
...  

2014 ◽  
Vol 1021 ◽  
pp. 100-104
Author(s):  
Li Jun Zhao

Raft foundation was researched in this paper,basing on the traditional “Wang Tiemeng Method”,the influence of temperature stress calculation by radiation condition was put forward emphatically. According to analysis the two calculation results, obtains the more precise temperature stress calculational method. Consequently the of concrete crack calculation and analysis result can be more precise and reliable.


2014 ◽  
Vol 945-949 ◽  
pp. 1082-1085
Author(s):  
Yong Ying Du ◽  
Zhi Li Sun

Temperature induced degradation is a widely recognized failure phenomenon.However, the basic mechanisms that control the onset and progression of such behavior are not well understood and are a topic of considerable interest in the electrical connector community. In this paper, the simulation analysis of temperature field on this topic are described. The distribution graph of temperature field for the electrical connectors and the highest temperature of the surface of electrical connector was achieved by analyzing a single blade/receptacle contact pair FEA model. A mathematical model was developed that related the early stage temperature levels for the connectors.Additionally, the thermal deformation caused by the temperature had little effect on the contact stress based on temperature - structure coupling field analysis for the electrical connector, the impact of temperature on the electrical connector was mainly reflected in the rate of oxidation of the metal surface. The failure physical process of the electric connector was drawn under temperature stress through the model and theory analysis for the electrical connector , and reliability growth program of the electrical connector was achieved under the temperature influence. The same transfer functions for one type of contact pair were obtained from the simulation, and the results showed that for this limited system, finite element modeling and analysis have great potential for evaluating the influence of design variations on degradation behavior.


Author(s):  
Zunqing Zhu ◽  
Qian Li ◽  
Yong Zhang ◽  
Guanjun Liu ◽  
Jing Qiu ◽  
...  

The intermittent fault of an electrical connector is a latent threat to the reliability of an electromechanical system. For electrical connector intermittent fault diagnosis, an intermittent fault must be reproduced. Reproducing an intermittent fault by a traditional test has a low efficiency and adds some damage to the product, which is not conducive to intermittent fault diagnosis. To further improve the reproduction efficiency of an intermittent fault and reduce the damage, optimal design of a step-stress-accelerated intermittent fault reproduction test is carried out. First, the number of intermittent faults and the degree of damage in the reproduction test are estimated, and reproduction and damage models of an intermittent fault during the step-stress reproduction test are constructed. Then, based on the intermittent fault and damage models, an optimized method based on a genetic algorithm is established. Finally, the validity and applicability of the theoretical model and the optimized method of the step-stress-accelerated test based on a genetic algorithm are verified by comparing data from a contrast test.


Author(s):  
T. V. S. L. Satyavani ◽  
Mathiyazhagan Senthilkumar ◽  
G. Dharma Prasad Rao ◽  
Navneet Kumar ◽  
Adapaka Srinivas Kumar

Abstract Experimental study was carried out to quantify the influence of temperature and different C-rate of discharge on in-house fabricated Lithium-ion (Li-ion) cell. 30Ah Li-ion cell is made of Lithium Iron Phosphate (LFP) cathode and Meso Carbon Micro Beads (MCMB) anode in prismatic configuration. Capability of Li-ion cell is defined by discharge capacity, voltage & power at different C-rate of discharge. Influence of 4 different current rates (C/5, C/2, 1C & 2C) at 5 different temperatures (−20, 0, 20, 40 and 60 °C) were studied. High discharge rate increases current density of cell which affect mass transport at electrode surface and electrolyte. Increased ohmic and concentration polarization at high rate of discharge decrease the original capacity. Average discharge voltage of cell is reduced gradually as operating temperature drop to below 20 °C. Electrochemical Impedance (EI) were measured on Li-ion cell in different frequency domain at different temperatures (−20, 0, 20 and 60 °C). The obtained impedance spectra were examined with an equivalent circuit using Zman software. The ohmic and charge transfer resistance displayed a solid dependence with respect to temperature.


Sign in / Sign up

Export Citation Format

Share Document