Modeling of gross calorific value based on coal properties by support vector regression method

Author(s):  
E. Hadavandi ◽  
James C. Hower ◽  
S. Chehreh Chelgani
2019 ◽  
Vol 9 (22) ◽  
pp. 4868 ◽  
Author(s):  
Hoang-Bac Bui ◽  
Hoang Nguyen ◽  
Yosoon Choi ◽  
Xuan-Nam Bui ◽  
Trung Nguyen-Thoi ◽  
...  

Gross calorific value (GCV) is one of the essential parameters for evaluating coal quality. Therefore, accurate GCV prediction is one of the primary ways to improve heating value as well as coal production. A novel evolutionary-based predictive system was proposed in this study for predicting GCV with high accuracy, namely the particle swarm optimization (PSO)-support vector regression (SVR) model. It was developed based on the SVR and PSO algorithms. Three different kernel functions were employed to establish the PSO-SVR models, including radial basis function, linear, and polynomial functions. Besides, three benchmark machine learning models including classification and regression trees (CART), multiple linear regression (MLR), and principle component analysis (PCA) were also developed to estimate GCV and then compared with the proposed PSO-SVR model; 2583 coal samples were used to analyze the proximate components and GCV for this study. Then, they were used to develop the mentioned models as well as check their performance in experimental results. Root-mean-squared error (RMSE), correlation coefficient (R2), ranking, and intensity color criteria were used and computed to evaluate the GCV predictive models developed. The results revealed that the proposed PSO-SVR model with radial basis function had better accuracy than the other models. The PSO algorithm was optimized in the SVR model with high efficiency. These should be used as a supporting tool in practical engineering to determine the heating value of coal seams in complex geological conditions.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1320
Author(s):  
Yuanyuan Sun ◽  
Gongde Xu ◽  
Na Li ◽  
Kejun Li ◽  
Yongliang Liang ◽  
...  

Both poor cooling methods and complex heat dissipation lead to prominent asymmetry in transformer temperature distribution. Both the operating life and load capacity of a power transformer are closely related to the winding hotspot temperature. Realizing accurate prediction of the hotspot temperature of transformer windings is the key to effectively preventing thermal faults in transformers, thus ensuring the reliable operation of transformers and accurately predicting transformer operating lifetimes. In this paper, a hot spot temperature prediction method is proposed based on the transformer operating parameters through the particle filter optimization support vector regression model. Based on the monitored transformer temperature, load rate, transformer cooling type, and ambient temperature, the hotspot temperature of a dry-type transformer can be predicted by a support vector regression method. The hyperparameters of the support vector regression are dynamically optimized here according to the particle filter to improve the optimization accuracy. The validity and accuracy of the proposed method are verified by comparing the proposed method with a traditional support vector regression method based on the real operating data of a 35 kV dry-type transformer.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Lingyu Dong

In recent years, wireless sensor network technology has continued to develop, and it has become one of the research hotspots in the information field. People have higher and higher requirements for the communication rate and network coverage of the communication network, which also makes the problems of limited wireless mobile communication network coverage and insufficient wireless resource utilization efficiency become increasingly prominent. This article is aimed at studying a support vector regression method for long-term prediction in the context of wireless network communication and applying the method to regional economy. This article uses the contrast experiment method and the space occupancy rate algorithm, combined with the vector regression algorithm of machine learning. Research on the laws of machine learning under the premise of less sample data solves the problem of the lack of a unified framework that can be referred to in machine learning with limited samples. The experimental results show that the distance between AP1 and AP2 is 0.4 m, and the distance between AP2 and Client2 is 0.6 m. When BPSK is used for OFDM modulation, 2500 MHz is used as the USRP center frequency, and 0.5 MHz is used as the USRP bandwidth; AP1 can send data packets. The length is 100 bytes, the number of sent data packets is 100, the gain of Client2 is 0-38, the receiving gain of AP2 is 0, and the receiving gain of AP1 is 19. The support vector regression method based on wireless network communication for regional economic mid- and long-term predictions was completed well.


2014 ◽  
Vol 543-547 ◽  
pp. 2045-2048
Author(s):  
Yuan Lv ◽  
Zhong Gan

In case of experimental data contaminated with errors and noise, the robust ε-support vector regression has good forecast accuracy and high generalization ability. However, it depends on the selection of system parameter. Firstly, this paper introduces the robust ε-support vector regression method. Secondly, as the experiments prove, the new method achieves high forecast accuracy by virtue of the optimal penalty parameter C. Finally, the optimal method of parameter C is presented in the last section.


Sign in / Sign up

Export Citation Format

Share Document