scholarly journals Engineering Mesoporous Structure in Amorphous Carbon Boosts Potassium Storage with High Initial Coulombic Efficiency

2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Ruiting Guo ◽  
Xiong Liu ◽  
Bo Wen ◽  
Fang Liu ◽  
Jiashen Meng ◽  
...  

AbstractAmorphous carbon shows great potential as an anode material for high-performance potassium-ion batteries; however, its abundant defects or micropores generally capture K ions, thus resulting in high irreversible capacity with low initial Coulombic efficiency (ICE) and limited practical application. Herein, pore engineering via a facile self-etching strategy is applied to achieve mesoporous carbon (meso-C) nanowires with interconnected framework. Abundant and evenly distributed mesopores could provide short K+ pathways for its rapid diffusion. Compared to microporous carbon with highly disordered structure, the meso-C with Zn-catalyzed short-range ordered structure enables more K+ to reversibly intercalate into the graphitic layers. Consequently, the meso-C shows an increased capacity by ~ 100 mAh g−1 at 0.1 A g−1, and the capacity retention is 70.7% after 1000 cycles at 1 A g−1. Multiple in/ex situ characterizations reveal the reversible structural changes during the charging/discharging process. Particularly, benefiting from the mesoporous structure with reduced specific surface area by 31.5 times and less defects, the meso-C generates less irreversible capacity with high ICE up to 76.7%, one of the best reported values so far. This work provides a new perspective that mesopores engineering can effectively accelerate K+ diffusion and enhance K+ adsorption/intercalation storage.

2021 ◽  
Author(s):  
Xuexia Lan ◽  
Jie Cui ◽  
Xiaofeng Zhang ◽  
Renzong Hu ◽  
Liang Tan ◽  
...  

Abstract Among the promising high capacity anode materials, tin dioxide (SnO2) represents a classic and important candidate that involves both conversion and alloying reactions toward Li storage. However, the inferior reversibility of conversion reactions usually results in low initial Coulombic efficiency (ICE, ~ 60%), small reversible capacity and poor cycling stability of electrodes. Here, we demonstrate that by carefully designing the interface structure of SnO2-Mo, a breakthrough comprehensive performance with ultrahigh average ICE up to 92.6 %, large capacity of 1067 mA h g-1 and 100 % capacity retention after 200 cycles can be realized in a multilayer Mo/SnO2/Mo electrode. The amorphous SnO2/Mo interfaces, which are induced by redistribution of oxygen atoms between SnO2 and Mo, can precisely adjust the reversible capacity and cycling stability of the multilayers, while the stable capacities of electrodes are parabolic with the interfacial density. Theoretical calculations and in/ex-situ experimental investigation clearly reveal that oxygen redistribution in the SnO2/Mo hetero-interfaces boosts the Li ions transport kinetics by inducing a built-in electric field and improves the reaction reversibility of SnO2. This work provides a new understanding of the interface-performance relationship of metal-oxide hybrid electrodes and pivotal guidance for creating high performance Li-ion batteries.


2021 ◽  
Vol 38 (11) ◽  
pp. 118401
Author(s):  
Fei Xie ◽  
Yaxiang Lu ◽  
Liquan Chen ◽  
Yong-Sheng Hu

Na-ion batteries (NIBs) have been attracting growing interests in recent years with the increasing demand of energy storage owing to their dependence on more abundant Na than Li. The exploration of the industrialization of NIBs is also on the march, where some challenges are still limiting its step. For instance, the relatively low initial Coulombic efficiency (ICE) of anode can cause undesired energy density loss in the full cell. In addition to the strategies from the sight of materials design that to improve the capacity and ICE of electrodes, presodiation technique is another important method to efficiently offset the irreversible capacity and enhance the energy density. Meanwhile, the slow release of the extra Na during the cycling is able to improve the cycling stability. In this review, we would like to provide a general insight of presodiation technique for high-performance NIBs. The recent research progress including the principles and strategies of presodiation will be introduced, and some remaining challenges as well as our perspectives will be discussed. This review aims to exhibit the basic knowledge of presodiation to inspire the researchers for future studies.


2018 ◽  
Vol 6 (45) ◽  
pp. 22840-22850 ◽  
Author(s):  
Meiling Kang ◽  
Yingying Wu ◽  
Xin Huang ◽  
Kaiqiang Zhou ◽  
Zhigao Huang ◽  
...  

A high-performance hybrid sodium-ion capacitor was developed through the engineering of a TiO2 anode to achieve record high initial coulombic efficiency.


Nanoscale ◽  
2014 ◽  
Vol 6 (15) ◽  
pp. 8884-8890 ◽  
Author(s):  
Ye Wang ◽  
Guozhong Xing ◽  
Zhao Jun Han ◽  
Yumeng Shi ◽  
Jen It Wong ◽  
...  

Pre-lithiation of a MoS2/OLC nano-urchin hybrid structure shows great potential in developing good performance lithium ion batteries with ultra-high initial coulombic efficiency.


2015 ◽  
Vol 3 (15) ◽  
pp. 7870-7876 ◽  
Author(s):  
Xiaoqin Zhao ◽  
Min Liu ◽  
Yong Chen ◽  
Bo Hou ◽  
Na Zhang ◽  
...  

L-Ti3C2 was prepared by exfoliating Ti3AlC2 in 40% HF. With sulfur-loaded L-Ti3C2 as cathodes, Li–S batteries deliver a high initial discharge capacity of 1291 mA h g−1, an excellent capacity retention of 970 mA h g−1 and coulombic efficiency of 99% after 100 cycles.


2015 ◽  
Vol 3 (1) ◽  
pp. 71-77 ◽  
Author(s):  
Yunming Li ◽  
Shuyin Xu ◽  
Xiaoyan Wu ◽  
Juezhi Yu ◽  
Yuesheng Wang ◽  
...  

This paper reports monodispersed hard carbon micro-spherules with a high energy density, high initial coulombic efficiency and excellent cycle performance.


2018 ◽  
Vol 2 (10) ◽  
pp. 1822-1828 ◽  
Author(s):  
Yan Li ◽  
Xinhai Li ◽  
Zhixing Wang ◽  
Huajun Guo ◽  
Tao Li ◽  
...  

LiNi0.8Co0.1Mn0.1O2 cathode derived from a novel [email protected](OH)2 hierarchical precursor exhibits improved tap density and initial coulombic efficiency, as well as excellent cycling stability and superior rate capability.


Nanomaterials ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 1221 ◽  
Author(s):  
Quoc Hanh Nguyen ◽  
Taehyun Park ◽  
Jaehyun Hur

Zinc sulfide (ZnS) nanocrystallites embedded in a conductive hybrid matrix of titanium carbide and carbon, are successfully fabricated via a facile high-energy ball-milling (HEBM) process. The structural and morphological analyses of the ZnS-TiC-C nanocomposites reveal that ZnS and TiC nanocrystallites are homogeneously distributed in an amorphous carbon matrix. Compared with ZnS-C and ZnS composites, the ZnS-TiC-C nanocomposite exhibits significantly improved electrochemical performance, delivering a highly reversible specific capacity (613 mA h g−1 over 600 cycles at 0.1 A g−1, i.e., ~85% capacity retention), excellent long-term cyclic performance (545 mA h g−1 and 467 mA h g−1 at 0.5 A g−1 and 1 A g−1, respectively, after 600 cycles), and good rate capability at 10 A g−1 (69% capacity retention at 0.1 A g−1). The electrochemical performance is significantly improved, primarily owing to the presence of conductive hybrid matrix of titanium carbide and amorphous carbon in the ZnS-TiC-C nanocomposites. The matrix not only provides high conductivity but also acts as a mechanical buffering matrix preventing huge volume changes during prolonged cycling. The lithiation/delithiation mechanisms of the ZnS-TiC-C electrodes are examined via ex situ X-ray diffraction (XRD) analysis. Furthermore, to investigate the practical application of the ZnS-TiC-C nanocomposite, a coin-type full cell consisting of a ZnS-TiC-C anode and a LiFePO4–graphite cathode is assembled and characterized. The cell exhibits excellent cyclic stability up to 200 cycles and a good rate performance. This study clearly demonstrates that the ZnS-TiC-C nanocomposite can be a promising negative electrode material for the next-generation lithium-ion batteries.


Sign in / Sign up

Export Citation Format

Share Document