scholarly journals Superionic Conductivity in Ceria-Based Heterostructure Composites for Low-Temperature Solid Oxide Fuel Cells

2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Yifei Zhang ◽  
Jingjing Liu ◽  
Manish Singh ◽  
Enyi Hu ◽  
Zheng Jiang ◽  
...  

AbstractCeria-based heterostructure composite (CHC) has become a new stream to develop advanced low-temperature (300–600 °C) solid oxide fuel cells (LTSOFCs) with excellent power outputs at 1000 mW cm−2 level. The state-of-the-art ceria–carbonate or ceria–semiconductor heterostructure composites have made the CHC systems significantly contribute to both fundamental and applied science researches of LTSOFCs; however, a deep scientific understanding to achieve excellent fuel cell performance and high superionic conduction is still missing, which may hinder its wide application and commercialization. This review aims to establish a new fundamental strategy for superionic conduction of the CHC materials and relevant LTSOFCs. This involves energy band and built-in-field assisting superionic conduction, highlighting coupling effect among the ionic transfer, band structure and alignment impact. Furthermore, theories of ceria–carbonate, e.g., space charge and multi-ion conduction, as well as new scientific understanding are discussed and presented for functional CHC materials.

2019 ◽  
Vol 2 (2) ◽  
pp. 1210-1220 ◽  
Author(s):  
Sun Jae Kim ◽  
Taner Akbay ◽  
Junko Matsuda ◽  
Atsushi Takagaki ◽  
Tatsumi Ishihara

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Yixiao Cai ◽  
Yang Chen ◽  
Muhammad Akbar ◽  
Bin Jin ◽  
Zhengwen Tu ◽  
...  

AbstractSince colossal ionic conductivity was detected in the planar heterostructures consisting of fluorite and perovskite, heterostructures have drawn great research interest as potential electrolytes for solid oxide fuel cells (SOFCs). However, so far, the practical uses of such promising material have failed to materialize in SOFCs due to the short circuit risk caused by SrTiO3. In this study, a series of fluorite/perovskite heterostructures made of Sm-doped CeO2 and SrTiO3 (SDC–STO) are developed in a new bulk-heterostructure form and evaluated as electrolytes. The prepared cells exhibit a peak power density of 892 mW cm−2 along with open circuit voltage of 1.1 V at 550 °C for the optimal composition of 4SDC–6STO. Further electrical studies reveal a high ionic conductivity of 0.05–0.14 S cm−1 at 450–550 °C, which shows remarkable enhancement compared to that of simplex SDC. Via AC impedance analysis, it has been shown that the small grain-boundary and electrode polarization resistances play the major roles in resulting in the superior performance. Furthermore, a Schottky junction effect is proposed by considering the work functions and electronic affinities to interpret the avoidance of short circuit in the SDC–STO cell. Our findings thus indicate a new insight to design electrolytes for low-temperature SOFCs.


2021 ◽  
Vol 46 (73) ◽  
pp. 36445-36453
Author(s):  
Myung Seok Lee ◽  
Sanghoon Lee ◽  
Wonyeop Jeong ◽  
Sangbong Ryu ◽  
Wonjong Yu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document