Analyzing Different Elution Profiles of Echinocandins In Vitro from the Antibiotic-Loaded Bone Cement Comprising Apatite or Polymethylmethacrylate

Author(s):  
Hiroki Hijikata ◽  
Tomoharu Mochizuki ◽  
Osamu Tanifuji ◽  
Hiroyuki Kawashima
Keyword(s):  
2006 ◽  
Vol 309-311 ◽  
pp. 801-804 ◽  
Author(s):  
S.B. Cho ◽  
Akari Takeuchi ◽  
Ill Yong Kim ◽  
Sang Bae Kim ◽  
Chikara Ohtsuki ◽  
...  

In order to overcome the disadvantage of commercialized PMMA bone cement, we have developed novel PMMA-based bone cement(7P3S) reinforced by 30 wt.% of bioactive CaO-SiO2 gel powders to induce the bioactivity as well as to increase mechanical property for the PMMA bone cement. The novel 7P3S bone cement hardened after mixing for about 7 minutes. For in vitro evaluation, apatite forming ability of it was investigated using SBF. When the novel 7P3S bone cement was soaked into SBF, it formed apatite on its surfaces within 1 week Furthermore; there is no decrease in its compressive strength within 9 weeks soaking in SBF. It is though that hardly decrease in compressive strength of 7P3S bone cement in SBF is due to the relative small amount of gel powder or its spherical shape and monosize. In vivo evaluation of the novel 7P3S bone cement was carried out using rabbit. After implantion into rabbit tibia for several periods, the interface between novel bone cement and natural bone was evaluated by CT images. According to the results, the novel bone cement directly contact to the natural bone without fibrous tissue after implantation for 4 weeks. This results indicates that the newly developed 7P3S bone cement can bond to the living bone and also be effectively used as bioactive bone cement without decrease in mechanical property.


2018 ◽  
Vol 73 (1) ◽  
pp. 59-68 ◽  
Author(s):  
A. G. Samokhin ◽  
Ju. N. Kozlova ◽  
D. V. Korneev ◽  
O. S. Taranov ◽  
E. A. Fedorov ◽  
...  

Background: The problem of bacterial colonization of implants used in medical practice continues to be relevant regardless of the material of the implant. Particular attention deserves polymeric implants, which are prepared ex tempore from polymethyl methacrylate, for example - duting orthopedic surgical interventions (so-called "bone cement"). The protection of such implants by antibiotic impregnation is subjected to multiple criticisms, therefore, as an alternative to antibiotics, lytic bacteriophages with a number of unique advantages can be used - however, no experimental studies have been published on the possibility of impregnating bacteriophages into polymethyl methacrylate and their antibacterial activity assessment under such conditions.Aims: to evaluate the possibility of physical placement of bacteriophages in polymethylmethacrylate and to characterize the lytic antibacterial effect of two different strains of bacteriophages when impregnated into polymer carrier ex tempore during the polymerization process in in vitro model.Materials and methods:  First stage - Atomic force microscopy (AFM) of polymethyl methacrylate samples for medical purposes was used to determine the presence and size of caverns in polymethyl methacrylate after completion of its polymerization at various reaction  temperatures (+6…+25°C and +18…+50°C).The second stage was performed in vitro and included an impregnation of two different bacteriophage strains (phage ph20 active against S. aureus and ph57 active against Ps. aeruginosa) into polymethyl methacrylate during the polymerization process, followed by determination of their antibacterial activity.Results: ACM showed the possibility of bacteriophages placement in the cavities of polymethyl methacrylate - the median of the section and the depth of cavities on the outer surface of the polymer sample polymerized at +18…+50°C were 100.0 and 40.0 nm, respectively, and on the surface of the transverse cleavage of the sample - 120.0 and 100.0 nm, respectively, which statistically did not differ from the geometric dimensions of the caverns of the sample polymerized at a temperature of +6…+25°C.The study of antibacterial activity showed that the ph20 bacteriophage impregnated in polymethyl methacrylate at +6…+25°C lost its effective titer within the first six days after the start of the experiment, while the phage ph57 retained an effective titer for at least 13 days.Conclusion: the study confirmed the possibility of bacteriophages impregnation into medical grade polymethyl methacrylate, maintaining the effective titer of the bacteriophage during phage emission into the external environment, which opens the way for the possible application of this method of bacteriophage delivery in clinical practice. It is also assumed that certain bacteriophages are susceptible to aggressive influences from the chemical components of "bone cement" and / or polymerization reaction products, which requires strict selection of bacteriophage strains that could be suitable for this method of delivery.


Author(s):  
Masaru Higa ◽  
Ikuya Nishimura ◽  
Kazuhiro Matsuda ◽  
Hiromasa Tanino ◽  
Yoshinori Mitamura

Though Total Hip Arthroplasty (THA) is being performed with greater frequency every year for patients with endstage arthritis of hip, mechanical fatigue of bone cement leading to damage accumulation is implicated in the loosening of cemented hip components. This fatigue failure of bone cement has been reported to be the result of high tensile and shear stresses at the bone cement. The aim of this study is to design the optimum shape of femoral component of a THA that minimizes the peak stress value of maximum principal stress at the bone cement and to validate the FEM results by comparing numerical stress with experimental ones. The p-version three-dimensional Finite Element Method (FEM) combined with an optimization procedure was used to perform the shape optimization. Moreover the strain in the cement mantle surrounding the cemented femoral component of a THA was measured in vitro using strain gauges embedded within the cement mantle adjacent to the developed femoral stem to validate the optimization results of FEM.


2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Ashley E. Levack ◽  
Kathleen Turajane ◽  
Xu Yang ◽  
Andy O. Miller ◽  
Alberto V. Carli ◽  
...  

1993 ◽  
Vol 28 (2) ◽  
pp. 867
Author(s):  
Joo Chul Ihn ◽  
Poong Taek Kim ◽  
Il Hyung Park ◽  
Chang Pyo Bae

Sign in / Sign up

Export Citation Format

Share Document