A Numerical Study on the Role of EPS Geofoam in Reducing Earth Pressure on Retaining Structures Under Dynamic Loading

Author(s):  
Muhammad Imran Khan ◽  
Mohamed A. Meguid
2021 ◽  
Vol 13 (9) ◽  
pp. 4754
Author(s):  
Muhammad Imran Khan ◽  
Mohamed A. Meguid

Expanded polystyrene (EPS) geofoam is a lightweight compressible material that has been widely used in various civil engineering projects. One interesting application of EPS in geotechnical engineering is to reduce the lateral earth pressure on rigid non-yielding retaining walls. The compressible nature of the EPS geofoam allows for the shear strength of the backfill soil to be mobilized, which leads to a reduction in lateral earth pressure acting on the wall. In this study, a finite element model is developed and used to investigate the role of geofoam inclusion between a rigid retaining wall and the backfill material on the earth pressure transferred to the wall structure. The developed model was first calibrated using experimental data. Then, a parametric study was conducted to investigate the effect of EPS geofoam density, relative thickness with respect to the wall height, and the frictional angle of backfill soil on the effectiveness of this technique in reducing lateral earth pressure. Results showed that low-density EPS geofoam inclusion provides the best performance, particularly when coupled with backfill of low friction angle. The proposed modeling approach has shown to be efficient in solving this class of problems and can be used to model similar soil-geofoam-structure interaction problems.


1991 ◽  
Vol 28 (2) ◽  
pp. 282-297 ◽  
Author(s):  
C. R. I. Clayton ◽  
I. F. Symons ◽  
J. C. Hiedra-Cobo

This paper investigates the pressures exerted by clay backfills against retaining structures. The lateral pressures are developed during three main phases: placement, compaction, and burial; horizontal total stress reduction at constant moisture content; and swelling or consolidation under approximately constant vertical stress. Experimental data from laboratory and pilot-scale studies, using clays of intermediate and high plasticity, are presented and used to assess the magnitude of the pressure changes in each phase. The process of compaction is examined and it is concluded that previously developed theories for assessing the pressures on retaining walls developed by compaction of granular soils are inapplicable for cohesive soils. The factors controlling the swelling of cohesive backfill are reviewed and results from a preliminary numerical study are used to provide an indication of the likely effects of plasticity and placement moisture content. Key words: earth pressure, retaining walls, clay, compaction, swelling.


2020 ◽  
Vol 74 ◽  
pp. 103112 ◽  
Author(s):  
Gang Wang ◽  
Gillian Pickup ◽  
Kenneth Sorbie ◽  
Eric Mackay ◽  
Arne Skauge

2014 ◽  
Author(s):  
Andrey I. Dmitriev ◽  
Heinz Kloß ◽  
Werner Österle
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document