scholarly journals Dimensioning of silicone adhesive joints: Eurocode-compliant, mesh-independent approach using the FEM

2020 ◽  
Vol 5 (3) ◽  
pp. 349-369 ◽  
Author(s):  
Micheal Drass ◽  
Michael A. Kraus

Abstract This paper deals with the application of the semi-probabilistic design concept (level I, DIN EN 1990) to structural silicone adhesives in order to calibrate partial material safety factors for a stretch-based limit state equation. Based on the current legal situation for the application of structural sealants in façades, a new Eurocode-compliant design concept is introduced and compared to existing design codes (ETAG 002). This is followed by some background information on semi-probabilistic reliability modeling and the general framework of the Eurocode for the derivation of partial material safety factors at Level I. Within this paper, a specific partial material safety factor is derived for DOWSIL 993 silicone on the basis of experimental data. The data were then further evaluated under a stretch-based limit state function to obtain a partial material safety factor for that specific limit state function. This safety factor is then extended to the application in finite element calculation programs in such a way that it is possible for the first time to perform mesh-independent static calculations of silicone adhesive joints. This procedure thus allows for great optimization of structural sealant design with potentially high economical as well as sustainability benefits. An example for the static verification of a bonded façade construction by means of finite element calculation shows (i) the application of EC 0 to silicone adhesives and (ii) the transfer of the EC 0 method to the finite element method with the result that mesh-independent ultimate loads can be determined.

Author(s):  
Masahiro Takanashi ◽  
Makoto Higuchi ◽  
Junki Maeda ◽  
Shinsuke Sakai

This paper discusses the margins of the design fatigue curve in the ASME Boiler and Pressure Vessel Codes Section III from a reliability analysis point of view. It is reported that these margins were developed so as to cover uncertainties of fatigue data scatter, size effect, and surface condition[1], but the reasons for them remain unclear. In order to investigate the physical implications of the design margin, a probabilistic approach is taken for the collected fatigue data of carbon and low-alloy steels. In this approach, these three parameters are treated as random variables, and an applied stress is also taken into consideration as a random variable. For the analysis, to begin with, a limit state function for fatigue is proposed. Next, reliability index contours of the design fatigue curves for carbon and low-alloy steels are obtained based on the proposed limit state function. The contours indicate that the margins 2 on stress and 20 on life do not provide equal reliability. The margin 20 on life is more conservative and the margin became a minimum near intersections of the design curves with margins 2 on stress and 20 on life. For practical applications, the partial safety factors (PSF) for the target reliability are computed for all materials and several levels of coefficients of variation (COV) of the applied stress. A sensitivity analysis of the PSFs clarifies that only two parameters, the strength (or the life) and the applied stress, are predominant. Thus, the partial safety factors for these two parameters are proposed in a tabular form.


2010 ◽  
Vol 34-35 ◽  
pp. 7-12 ◽  
Author(s):  
Shu Xia Sun ◽  
Ming Yan ◽  
Ping Bai ◽  
Li Han

The paper studies on the gear reliability design method using probability finite element method based on response surface and it indicates that the reliability sensibility calculation method of function in response surface can be used when limit state function is unknown. The limit state function established on response function is quadratic polynomial with simple form and it makes the calculation of variance and deviation very convenient, which realizes the simple and easy calculation of reliability sensitivity and largely increases calculation velocity and precision. The method can be applied for general purpose with certain standard, which is easy for programming and accomplishing gear reliability design in a rapid and precise way.


2012 ◽  
Vol 446-449 ◽  
pp. 2321-2325
Author(s):  
Zhi Yong Zhang ◽  
Wen Bo Huang ◽  
Yue Fa Zhou ◽  
Tian Shu Song

The seismic reliability analysis of complex structure is carried out based on the response surface method and finite element method. Firstly, the appropriate design points are selected based on the mean values and standard deviations of the basic random variables. Secondly, the finite element method is employed to obtain the values of the limit state function of the complex structure. Thirdly, with selected design points and the obtained values of the limit state function of the complex structure, a polynomial function is constructed to approximate the original implicit limit state function. Then, with the established explicit polynomial limit state function and available methods of structural reliability analysis, the seismic reliability of the complex structure is estimated. Numerical analyses show that the established method is simple to use for the evaluation of the reliability analysis of complex structure.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Ping Wang ◽  
Dongyan Liu ◽  
Haibin Huang ◽  
Dongsheng Liu

Considering the disadvantages of the slice method commonly employed in reliability analysis of slopes, a novel method (Spoke model) was proposed for reliability analysis and safety factor calculation of slopes in this work based on geometrical relationship among slices. The safety factor and the coefficients of limit state function of slopes could be achieved with the Gaussian integral method. The minimum safety factor and the minimum reliability index, as well as their corresponding coordinates on the slip surface, can be calculated with the improved JC method and the searching method. A novel and practical method for reliability analysis of slopes has been achieved. With this method the slice process could be avoided, which helps to eliminate some calculation errors caused by oversimplified assumption. Moreover, the explicit expression of safety factor in this method requires no repeated iterative solution, which is employed in traditional slice methods, as well as can be developed into a limit state function required by calculation of the reliability index. It is demonstrated that this method works efficiently and succinctly in evaluation of reliability index and safety factor for soil slopes.


Author(s):  
Daowu Zhou ◽  
Ali Mirzaee-Sisan

A probabilistic engineering critical assessment of embedded flaws in a pipeline was carried out as a case study using the limit state function based on both finite element analysis and the failure assessment diagram. The response surface model was used in determining the finite element analysis based limit state function in order to reduce the number of finite element analysis runs. The first order reliability method and second order reliability method were used to determine the probability of failure. This research work highlights the advantage of using specific limit state function for engineering critical assessment of embedded flaws.


Author(s):  
Malek Brahimi ◽  
Sidi Berri ◽  
Joel Lopez

Studies of reliability in current practice indicate that reliability based on conventional methods requires a nonlinear transformation to a set of normal distributions, which effectively changes the shape of limit state function. In this paper, the general formulation of safety for aluminum elements and the associated methods of analysis are reviewed. Direct simulation is used to find the probability of failure. It is concluded that direct simulations of safety of aluminum elements of Pr (probability of failure) by failure counting is a good method to achieve acceptable safety factors.


2012 ◽  
Vol 532-533 ◽  
pp. 408-411
Author(s):  
Wei Tao Zhao ◽  
Yi Yang ◽  
Tian Jun Yu

The response surface method was proposed as a collection of statistical and mathematical techniques that are useful for modeling and analyzing a system which is influenced by several input variables. This method gives an explicit approximation of the implicit limit state function of the structure through a number of deterministic structural analyses. However, the position of the experimental points is very important to improve the accuracy of the evaluation of failure probability. In the paper, the experimental points are obtained by using Givens transformation in such way these experimental points nearly close to limit state function. A Numerical example is presented to demonstrate the improved accuracy and computational efficiency of the proposed method compared to the classical response surface method. As seen from the result of the example, the proposed method leads to a better approximation of the limit state function over a large region of the design space, and the number of experimental points using the proposed method is less than that of classical response surface method.


1987 ◽  
Vol 109 (1) ◽  
pp. 9-22 ◽  
Author(s):  
C. P. Ellinas ◽  
P. W. J. Raven ◽  
A. C. Walker ◽  
P. Davies

This paper considers the application of the limit state philosophy of structural analysis to pipeline design. General aspects of the philosophy are discussed and the approach to the evaluation of safety factors is reviewed. The paper further considers the various limit and serviceability states which would be relevant to a pipeline and reviews the various factors which may require consideration, before a code embodying the limit state philosophy could be formulated. A review of the state of current knowledge on various aspects of geometry and material characteristics, loading and structural behavior is presented. It is intended that such a review can be used as the basis for a larger study to provide guidance and data for the evaluation of rational levels of safety factor. The major conclusion reached by the authors is that a limit state philosophy would be valuable in providing a suitable framework, which may highlight the significant aspects of pipeline design and which can most easily accommodate new requirements and results obtained from research.


Author(s):  
Hideo Machida ◽  
Hiromasa Chitose ◽  
Tatsuhiro Yamazaki

This paper reports the results of the study on the failure modes and limit loads of piping in nuclear power plants subjected to cyclic seismic loading. By investigating the past fracture tests and earthquake resistance tests, it became clear that dominant failure mode of piping was fatigue, and the effect of ratchet strain was negligible. Until now, the stress generated with the acceleration of an earthquake was classified into the primary stress. However, the relationship between the input acceleration and the seismic response displacement of the pipe observed from earthquake resistance tests is non-linear, and increasing rate of displacement is lower than that of input acceleration in elastic-plastic stress condition. Therefore, the seismic loading can be treated as displacement controlled loading. To evaluate the reliability-based critical acceleration, a limit state function was defined taking the variations in the fatigue strength or some parameters into consideration. By using the limit state function, the reliability was evaluated for the typical piping of boiling water reactor (BWR) plants subjected to cyclic seismic loading, and a partial safety factors were calculated. Based on these results, a fatigue curve corresponding to the target reliability was proposed.


Sign in / Sign up

Export Citation Format

Share Document