Glass Structures & Engineering
Latest Publications


TOTAL DOCUMENTS

161
(FIVE YEARS 70)

H-INDEX

11
(FIVE YEARS 4)

Published By Springer-Verlag

2363-5150, 2363-5142

Author(s):  
Efstratios Volakos ◽  
Chris Davis ◽  
Martien Teich ◽  
Peter Lenk ◽  
Mauro Overend

AbstractConnections between load-bearing glass components play a major role in terms of the structural integrity and aesthetics of glass applications. Recently, a new type of adhesive connection, known as embedded laminated glass connections, has been developed where a metallic insert is embedded within a laminated glass unit by means of transparent polymeric foil interlayers and assembled through an autoclave lamination process. In this study, a novel variant of this connection, consisting of a thin steel insert encapsulated by a transparent cold-poured resin, is proposed and examined. In particular, the axial tensile mechanical response of this connection is assessed via numerical (FE) analyses and destructive pull-out tests performed on physical prototypes at different displacement rates in order to assess the effect of the strain rate-dependent behaviour of the resin interlayer. It was found that the pull-out stiffness, the maximum load-bearing capacity and the failure mode of the connection are significantly affected by the imposed displacement rate. The numerical (FE) analysis of the pull-out tests, performed in Abaqus, showed that the complex state of stress in the vicinity of the connection is the result of two load-transfer mechanisms and that the relative contribution of these mechanisms depends on the insert geometry and the relative stiffnesses of the constituent materials. Overall, it is concluded that the prototypes are promising in terms of manufacturability, aesthetics and structural performance and thus the novel variant connection considered in this study offers a promising alternative to existing load-bearing connections for laminated glass structures, but further investigations are required to ascertain its suitability for real-world applications.


Author(s):  
M. Overend ◽  
J. Belis ◽  
C. Louter ◽  
J. H. Nielsen ◽  
J. Schneider

Author(s):  
Gregorio Mariggiò ◽  
Sara Dalle Vacche ◽  
Roberta Bongiovanni ◽  
Christian Louter ◽  
Mauro Corrado

AbstractThe durability of an innovative polymeric coating recently developed by the authors to prevent stress corrosion in annealed glass is herein examined. The coating, having functional graded properties through the thickness, is optimised to provide a very good adhesion with glass and an excellent hydrophobic behavior on the side exposed to the environment, thus creating a good barrier to humidity, which is the triggering agent for stress corrosion. Three scenarios are analysed in terms of ageing: (i) cyclic loading, accomplished by subjecting coated samples to repetitive loading; (ii) natural weathering, performed by exposing coated samples to atmospheric agents; (iii) artificial weathering, carried out by exposing coated specimens to fluorescent UV lamps, heat and water. The durability of the coating is assessed indirectly, on the base of its residual effectiveness in preventing stress corrosion, by comparing the bending strength, obtained with the coaxial double ring test, of aged coated glass specimens with that of un-coated and freshly coated specimens. The obtained results prove that the proposed formulation is almost insensitive to cyclic loading, maintains a very good performance in case of natural weathering, whereas is slightly more sensitive to artificial weathering.


Author(s):  
Xavier Centelles ◽  
J. Ramon Castro ◽  
F. Pelayo ◽  
Manuel Aenlle-López ◽  
Luisa F. Cabeza

AbstractLaminated glass beams without metallic or polymeric reinforcements generally lack post-breakage strength and ductility. This paper aims to perform a comparative study by testing five different fully transparent laminated glass beam designs in order to see how parameters such as the number and thickness of glass sheets (3 x 10 mm or 5 x 6 mm), the interlayer material (PVB Clear or SentryGlas), and the thermal treatment of glass (annealed or heat-strengthened) affect the pre-breakage performance and post-breakage safety. A buckling analysis is also performed using a numerical model with ABAQUS CAE. The study includes a comparison between the results of different experimental mechanical tests on laminated glass beams, including the tests presented in this paper, as well as other tests found in the literature. All designs presented a linear elastic behaviour until initial breakage. The interlayer material mainly affected the crack shape of laminated glass beams. Beams with five sheets of annealed glass had a more progressive breakage, and therefore a safer behaviour, than beams with three sheets of annealed or heat-strengthened glass.


2021 ◽  
Vol 6 (3) ◽  
pp. 273-273
Author(s):  
John Kooymans ◽  
Steffen Feirabend ◽  
Graham Coult
Keyword(s):  

Author(s):  
David Kinsella ◽  
Erik Serrano

AbstractExperimental strength tests are performed on two series of nominally equal plate specimens of annealed soda-lime glass subjected to either ring-on-ring or ball-on-ring bending. The Weibull effective area which represents a fictitious surface area exposed to uniform tension is calculated using closed-form solutions. Finite-size weakest-link systems are implemented numerically in a computationally intensive procedure for random sampling of plates extracted from a virtual jumbo pane whose surface area contains a set of stochastic Griffith flaws. A non-linear finite element analysis is conducted to compute the bending stresses. The glass surface condition is represented in different flaw-size concepts that depend on a truncated exponentially decaying flaw-size distribution. Stress corrosion effects are modelled by implementation of subcritical crack growth. The effective ball contacting radius is determined in a numerical computation. The results show that surface size effects in glass are not only a matter of strength-scaling, as also the shape of the distribution changes. While the lowest strength value, as per the major in-plane principal stress at the recorded fracture origin, in the respective data sets is very similar, the strongest specimen observed in ball-on-ring testing is over 70% stronger than the correspondingly strongest specimen observed in ring-on-ring bending. The Shift function is used to make visual comparisons of the difference in quantiles in the observed data sets. Use of an ordinary Weibull distribution leads to non-conservative strength predictions on smaller effective areas, and to too low strength predictions than are viable for glass design on larger areas. The numerical implementation of finite-size weakest-link systems can produce better predictions for the strength-scaling compared to a Weibull distribution, in particular when the flaw-size concept is modified to include a doubly stochastic flaw-size distribution or a random noise added to each subdivided region of the discretized surface area. The simulated ball-on-ring fracture origins exhibit greater spread from the centre point than otherwise observed in laboratory tests. It is indicated that the chosen representation of surface condition may not be accurate enough for the modelling of all fracture origins in the ball-on-ring setup even though acceptable results are obtained with the ring-on-ring model. There is a need for more insight into the surface condition of glass which can be conducive to the development of flaw-size based weakest-link modelling.


Author(s):  
Telesilla Bristogianni ◽  
Faidra Oikonomopoulou ◽  
Fred A. Veer

AbstractCast glass has great potential for diverse load-bearing, architectural applications; through casting, volumetric glass components can be made that take full advantage of glass’s stated compressive strength. However, the lack of engineering, production and quality control standards for cast glass and the intertwined ambiguities over its mechanical properties-particularly due to the variety in chemical compositions and the lack of understanding of the influence of flaws occurring in the glass bulk-act as an impediment to its wide-spread application. Addressing the above uncertainties, this work studies a total of 64 silicate-based glass specimens, prepared in 20 * 30 * 350 mm beam size, either by kiln-casting at relatively low forming temperatures (970–1120 $$^{\circ }$$ ∘ C), or by modification of industrially produced glass. For the kiln-casting of the specimens, pure and contaminated recycled cullet are used, either individually or in combination (composite glasses). The defects introduced in the glass specimens during the casting process are identified with digital microscopy and qualitative stress analysis using cross polarized light, and are categorized as stress-inducing, strength-reducing or harmless. The Impulse Excitation Technique is employed to measure the Young’s modulus and internal friction of the different glasses. Differential Scanning Calorimetry is used on a selection of glasses, to investigate changes in the glass transition range and fictive temperature of the kiln-cast glasses due to the slower cooling and prolonged annealing. The four-point bending experiments are shedding light upon the flexural strength and stiffness of the different glasses, while the fractographic analysis pinpoints the most critical defects per glass category. The experiments show the flexural strength of cast glass ranging between 30–73 MPa, according to the level of contamination and the chemical composition. The measured E moduli by both methods are in close agreement, ranging between 60–79 GPa. The comparison of the flexural strength with prior testing of cast glass involving shorter span fixtures showed a decreasing strength with increasing size for the contaminated specimens, but similar strengths for pure compositions. The results highlight the versatile role of defects in determining the glass strength and the complexity that arises in creating statistical prediction models and performing quality control.


Sign in / Sign up

Export Citation Format

Share Document