Sulphuric Acid Resistance of Slag Geopolymer Concrete Modified with Fly Ash and Silica Fume

Author(s):  
Hafez E. Elyamany ◽  
Abd Elmoaty M. Abd Elmoaty ◽  
Abdul Rahman A. Diab

The investigative studies on mechanical performance & behaviour, of Geopolymer Concrete (GPC) before and after the exposure to elevated temperatures (of 200 0 C -1000 0 C with an increment of 100 0 C). Indicate that the GPC Specimens Exhibited better Compressive strength at higher temperatures than that of those made by regular OPC Concrete with M30 Grade. The chronological changes in the geopolymeric structure upon exposure to these temperatures and their reflections on the thermal behaviour have also been explored. The SEM images indicate GPC produced by fly ash , metakaolin and silica fume, under alkaline conditions form Mineral binders that are not only non-flammable and but are also non-combustible resins and binders. Further the Observations drawn disclose that the mass and compressive strength of concrete gets reduced with increase in temperatures.


2020 ◽  
Vol 32 ◽  
pp. 101780
Author(s):  
Shaswat Kumar Das ◽  
Syed Mohammed Mustakim ◽  
Adeyemi Adesina ◽  
Jyotirmoy Mishra ◽  
Thamer Salman Alomayri ◽  
...  

Author(s):  
Aikot Pallikkara Shashikala ◽  
Praveen Nagarajan ◽  
Saranya Parathi

Production of Portland cement causes global warming due to the emission of greenhouse gases to the environment. The need for reducing the amount of cement is necessary from sustainability point of view. Alkali activated and geopolymeric binders are used as alternative to cement. Industrial by-products such as fly ash, ground granulated blast furnace slag (GGBS), silica fume, rice husk ash etc. are commonly used for the production of geopolymer concrete. This paper focuses on the development of geopolymer concrete from slag (100% GGBS). Effect of different cementitious materials such as lime, fly ash, metakaolin, rice husk ash, silica fume and dolomite on strength properties of slag (GGBS) based geopolymer concrete are also discussed. It is observed that the addition of dolomite (by-products from rock crushing plants) into slag based geopolymer concrete reduces the setting time, enhances durability and improves rapidly the early age strength of geopolymer concrete. Development of geopolymer concrete with industrial by-products is a solution to the disposal of the industrial wastes. The quick setting concrete thus produced can reduce the cost of construction making it sustainable also.


Author(s):  
Hafez Elsayed Elyamany ◽  
Abd Elmoaty Mohamed Abd Elmoaty ◽  
Abdul Rahman Ahmed Diab

This research focused on the role of fly ash and silica fume on slag geopolymer concrete through investigating workability (slump, and slump loss), initial setting time, final setting time, and mechanical properties of slag geopolymer concrete, S-GPC, (compressive strength, splitting tensile strength, modulus of elasticity) in addition to SEM (Scanning electron microscope), and X-Ray analysis. The considered variables included, fly ash (FA) content as a replacement of ground granulated blast furnace slag (GS) (0, 10, 20, 30, and 40 %), presence of silica fume (SF) as a replacement of slag, concentration of sodium hydroxide, NaOH, (molarity: 10M, 16M, and 18M), additional water content (7.5,11,14, and 20 %), and curing type (thermal, air, and water curing). S-GPC yielded rapid stiffening and high slump loss with high mechanical properties. The use of silica fume or fly ash or a mix of them enhanced workability, decreased rate of slump loss, and delayed setting time. ACI 318 equation over estimates splitting tensile strength of FS-GPC.


2017 ◽  
Vol 149 ◽  
pp. 1062-1067 ◽  
Author(s):  
Francis N. Okoye ◽  
Satya Prakash ◽  
Nakshatra B. Singh

Author(s):  
Vaibhavi G Galande ◽  
Harshavardhan U Kamble

Geopolymer concrete can be the future of the conventional concrete and it can be used as replacement agent instead of conventional concrete in construction work along with that the GPC is eco friendly in nature as it does not emits CO2 in atmosphere so it is helpful to reduce the Greenhouse effect. The material used for the manufacturing of GPC are Binder’s and Actuators. Birder’s are obtained from the thermal power plant also known as fly ash and actuator consist of the sodium silicate and sodium hydroxide, calcium chloride, sodium thiocyanate, potassium thiocyanate, etc. By combing these acceleration and Binder’s with other concrete material the process of Geopolymeration starts. The objective of these study is to give a detailed review on the geopolymer concrete mix design, compressive behavior, flexural and split tensile behavior and chemical acid resistance when immersed in sopheric acid and nitric acid by using various research paper and the test result difference of conventional concrete and geopolymer concrete. Based on that a review is prepared.


Author(s):  
Kartika Ilma Pratiw ◽  
Saloma .

The aim of this study was to replace Portland cement with fly ash-based geopolymer as precursors, to serve as a binder after reacting with NaOH and Na2SiO3 activators. The test object existed in the form of a cube of size 50 x 50 x 50 mm. The mortar was treated for 28 days and then immersed in a sulfate solution at similar interval using the wet-dry cycle and non-cycle methods. The compressive strength of the geopolymer mortar was estimated as 45.90 MPa before immersion. Therefore, 35.79 MPa, 41.09 MPa, as well as 37.85 MPa were reported after submersion in the respective solutions of 5% H2SO4, Na2SO4, and NaCl, using wet-dry cycle. Based on the non-cycle approach, the resulting strength was 37.36 MPa, 43.05 MPa and 39.52 MPa correspondingly.


2013 ◽  
Vol 12 (2) ◽  
pp. 317-322 ◽  
Author(s):  
Khoa Tan Nguyen ◽  
Young Hak Lee ◽  
Jaehong Lee ◽  
Namshik Ahn

Sign in / Sign up

Export Citation Format

Share Document