A Comprehensive Mathematical Analysis on Achieving Stress–Strain Behavior at Large Strains in Bulge Test

Author(s):  
Ramin Ebrahimi ◽  
Faraz Rahimzadeh Lotfabad
2001 ◽  
Vol 695 ◽  
Author(s):  
Miroslav Cieslar ◽  
Ayatollah Karimi ◽  
Jean-Luc Martin

ABSTRACTEffects of recovery and recrystallization on subsequent stress – strain behavior were studied in foils of non-age hardenable Al based alloy. A bulge testing device for mechanical testing of thin free standing films and foils, enabling the detection of large strains, was employed. The bulge tester was used at RT both for the predeformation of the foil in the biaxial mode and also for the study of softening after subsequent one-step annealing. Three stages of strength drop as a function of the annealing temperature were observed between RT and 590°C. The contribution of different annealing processes to the softening was established using transmission electron microscopy. It was found that below 200°C only redistribution of dislocations inside dislocation cells and refinement of the cell structure occurred. Between 200°C and 380°C the formation of a subgrain structure was observed. The softening process is terminated as partial recrystallization takes place at higher annealing temperatures. Dynamic interaction of solutes with dislocations was revealed during prestraining as well as poststraining of foils. This effect resulted in the appearance of a negative strain rate sensitivity and dynamic instabilities after appropriate prestraining and annealing conditions. The above results show that bulge testing of Al foils allows to study the successive annealing stages by measuring the most important macroscopic parameters of plastic deformation (yield stress, work hardening rate, ductility, strain rate sensitivity, etc.). These stages could be related to the microstructure evolution.


1982 ◽  
Vol 104 (4) ◽  
pp. 274-279 ◽  
Author(s):  
J. S. Gunasekera ◽  
J. Havranek ◽  
M. H. Littlejohn

Compressions tests on right, cylindrical steel specimens were performed in order to determine the stress-strain behavior. Lubrication was achieved by using a thin PTFE (Hostaflon) sheet on either side of the specimen. Preliminary testing with geometrically similar specimens (aspect ratio of 1.5) showed that the stress-strain relations were affected by the size of the specimen. This paper deals with the theoretical investigation and the experimental verification of this phenomenon (termed the “size effect”). It is concluded that homogeneous deformations up to large strains can be maintained by proper selection of the PTFE sheet thickness.


2012 ◽  
Vol 1 (3) ◽  
pp. 32-38
Author(s):  
Tantary M.A ◽  
◽  
Upadhyay A ◽  
Prasad J ◽  
◽  
...  

1985 ◽  
Vol 58 (4) ◽  
pp. 830-856 ◽  
Author(s):  
R. J. Cembrola ◽  
T. J. Dudek

Abstract Recent developments in nonlinear finite element methods (FEM) and mechanics of composite materials have made it possible to handle complex tire mechanics problems involving large deformations and moderate strains. The development of an accurate material model for cord/rubber composites is a necessary requirement for the application of these powerful finite element programs to practical problems but involves numerous complexities. Difficulties associated with the application of classical lamination theory to cord/rubber composites were reviewed. The complexity of the material characterization of cord/rubber composites by experimental means was also discussed. This complexity arises from the highly anisotropic properties of twisted cords and the nonlinear stress—strain behavior of the laminates. Micromechanics theories, which have been successfully applied to hard composites (i.e., graphite—epoxy) have been shown to be inadequate in predicting some of the properties of the calendered fabric ply material from the properties of the cord and rubber. Finite element models which include an interply rubber layer to account for the interlaminar shear have been shown to give a better representation of cord/rubber laminate behavior in tension and bending. The application of finite element analysis to more refined models of complex structures like tires, however, requires the development of a more realistic material model which would account for the nonlinear stress—strain properties of cord/rubber composites.


2014 ◽  
Vol 46 ◽  
pp. 65-72 ◽  
Author(s):  
Jodilson Amorim Carneiro ◽  
Paulo Roberto Lopes Lima ◽  
Mônica Batista Leite ◽  
Romildo Dias Toledo Filho

1978 ◽  
Vol 12 (3) ◽  
pp. 265-269 ◽  
Author(s):  
S. Miura ◽  
F. Hori ◽  
N. Nakanishi

Sign in / Sign up

Export Citation Format

Share Document