scholarly journals Particle Image Velocimetry Measurements of Flow Over an Ogee-Type Weir in a Hydraulic Flume

2020 ◽  
Vol 18 (12) ◽  
pp. 1451-1462
Author(s):  
Jarosław Biegowski ◽  
Maciej Paprota ◽  
Wojciech Sulisz

Abstract Laboratory tests of water flowing over a modified ogee weir are carried out in a wave–current flume for two different scales. A model of a weir representing a part of a spillway section of the existing Włocławek dam (Vistula River, Poland) is mounted in a wave–current flume. The Froude similarity law is used to simulate the flow over a real damming structure at 1:25 and 1:50 scales. Particle image velocimetry methods are employed to measure a flow velocity field over the crest of the weir model. The system is capable of providing high fidelity velocity fields at sampling rates of 10 Hz and 50 Hz. Detailed information on flow characteristics is extracted from the instantaneous velocity field measurements to provide a comprehensive description of the kinematics of a weir flow at discharges corresponding to hydrological events with return periods of 100 and 1000 years, revealing some interesting spatial features. The geometry of the weir results in the development of a characteristic circulation cell, which is relatively wide for the lower discharge. When the flow intensity increases, a triangular circulation develops behind the weir crest instead. Moreover, sudden changes in the flow regime lead to the rapid formation of vortex structures, which propagate downstream at speeds ranging from 0.3 to 1 m s−1. The origin of eddy formation is identified at the upstream and downstream ends of the weir crest for respective average velocities at the crest of approx. 0.6 m s−1 and 1.2 m s−1.

2015 ◽  
Vol 137 (12) ◽  
Author(s):  
Nirmalendu Biswas ◽  
Souvick Chatterjee ◽  
Mithun Das ◽  
Amlan Garai ◽  
Prokash C. Roy ◽  
...  

This work investigates natural convection in an enclosure with localized heating on the bottom wall with a flushed or protruded heat source and cooled on the top and the side walls. Velocity field measurements are done by using 2D particle image velocimetry (PIV) technique. Proper orthogonal decomposition (POD) has been used to create low dimensional approximations of the system for predicting the flow structures. The POD-based analysis reveals the modal structure of the flow field and also allows reconstruction of velocity field at conditions other than those used in PIV study.


2006 ◽  
Author(s):  
Pranay Mahendra ◽  
Michael G. Olsen

Recently the automotive industry has been using superchargers to boost the power generated by the engine, but the noise generated by these superchargers is of great concern. The noise generated during the working of the supercharger is primarily a fluid mechanics phenomenon. Particle Image Velocimetry (PIV) was used to study air flow characteristics of a positive displacement supercharger with an emphasis on gaining insights into strategies for noise reduction. PIV was used to measure the instantaneous and ensemble-averaged velocity fields of the flow at the outlet of the supercharger as a function of blade position, allowing for visualization of the flow as it leave the blades. The preliminary results show that the flow exits the supercharger as a high speed jet at the end closer to the pulley end, and the flow varies with the change in blade position.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1205
Author(s):  
Ruiqi Wang ◽  
Riqiang Duan ◽  
Haijun Jia

This publication focuses on the experimental validation of film models by comparing constructed and experimental velocity fields based on model and elementary experimental data. The film experiment covers Kapitza numbers Ka = 278.8 and Ka = 4538.6, a Reynolds number range of 1.6–52, and disturbance frequencies of 0, 2, 5, and 7 Hz. Compared to previous publications, the applied methodology has boundary identification procedures that are more refined and provide additional adaptive particle image velocimetry (PIV) method access to synthetic particle images. The experimental method was validated with a comparison with experimental particle image velocimetry and planar laser induced fluorescence (PIV/PLIF) results, Nusselt’s theoretical prediction, and experimental particle tracking velocimetry (PTV) results of flat steady cases, and a good continuity equation reproduction of transient cases proves the method’s fidelity. The velocity fields are reconstructed based on different film flow model velocity profile assumptions such as experimental film thickness, flow rates, and their derivatives, providing a validation method of film model by comparison between reconstructed velocity experimental data and experimental velocity data. The comparison results show that the first-order weighted residual model (WRM) and regularized model (RM) are very similar, although they may fail to predict the velocity field in rapidly changing zones such as the front of the main hump and the first capillary wave troughs.


Author(s):  
K Anand ◽  
KT Ganesh

The effect of pressure gradient on a separated boundary layer past the leading edge of an airfoil model is studied experimentally using electronically scanned pressure (ESP) and particle image velocimetry (PIV) for a Reynolds number ( Re) of 25,000, based on leading-edge diameter ( D). The features of the boundary layer in the region of separation and its development past the reattachment location are examined for three cases of β (−30°, 0°, and +30°). The bubble parameters such as the onset of separation and transition and the reattachment location are identified from the averaged data obtained from pressure and velocity measurements. Surface pressure measurements obtained from ESP show a surge in wall static pressure for β = −30° (flap deflected up), while it goes down for β = +30° (flap deflected down) compared to the fundamental case, β = 0°. Particle image velocimetry results show that the roll up of the shear layer past the onset of separation is early for β = +30°, owing to higher amplification of background disturbances compared to β = 0° and −30°. Downstream to transition location, the instantaneous field measurements reveal a stretched, disoriented, and at instances bigger vortices for β = +30°, whereas a regular, periodically shed vortices, keeping their identity past the reattachment location, is observed for β = 0° and −30°. Above all, this study presents a new insight on the features of a separation bubble receiving a disturbance from the downstream end of the model, and these results may serve as a bench mark for future studies over an airfoil under similar environment.


2002 ◽  
Vol 33 (6) ◽  
pp. 794-800 ◽  
Author(s):  
U. Dierksheide ◽  
P. Meyer ◽  
T. Hovestadt ◽  
W. Hentschel

Sign in / Sign up

Export Citation Format

Share Document