scholarly journals Experimental Validation of Falling Liquid Film Models: Velocity Assumption and Velocity Field Comparison

Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1205
Author(s):  
Ruiqi Wang ◽  
Riqiang Duan ◽  
Haijun Jia

This publication focuses on the experimental validation of film models by comparing constructed and experimental velocity fields based on model and elementary experimental data. The film experiment covers Kapitza numbers Ka = 278.8 and Ka = 4538.6, a Reynolds number range of 1.6–52, and disturbance frequencies of 0, 2, 5, and 7 Hz. Compared to previous publications, the applied methodology has boundary identification procedures that are more refined and provide additional adaptive particle image velocimetry (PIV) method access to synthetic particle images. The experimental method was validated with a comparison with experimental particle image velocimetry and planar laser induced fluorescence (PIV/PLIF) results, Nusselt’s theoretical prediction, and experimental particle tracking velocimetry (PTV) results of flat steady cases, and a good continuity equation reproduction of transient cases proves the method’s fidelity. The velocity fields are reconstructed based on different film flow model velocity profile assumptions such as experimental film thickness, flow rates, and their derivatives, providing a validation method of film model by comparison between reconstructed velocity experimental data and experimental velocity data. The comparison results show that the first-order weighted residual model (WRM) and regularized model (RM) are very similar, although they may fail to predict the velocity field in rapidly changing zones such as the front of the main hump and the first capillary wave troughs.

2021 ◽  
Vol 2127 (1) ◽  
pp. 012018
Author(s):  
S S Usmanova ◽  
N M Skornyakova ◽  
Yu S Belov ◽  
M V Sapronov ◽  
A V Kuchmenko ◽  
...  

Abstract The paper is devoted to development of the optical electronic setup for carrying out measurements by multicolor particle image velocimetry. The main advantage of this method is the ability to visualize vector velocity fields in several planes simultaneously. As a result a 3D model of a setup was developed, a laboratory sample was assembled and series of testing experiments were performed. As a test object, vortex structure formed by a chemical stirrer in a cuvette with liquid has been considered. The experimental data were compared with the computer model developed in SolidWorks and FlowVision software.


2016 ◽  
Vol 139 (1) ◽  
Author(s):  
Marios D. Georgiou ◽  
Aristides M. Bonanos ◽  
John G. Georgiadis

An experimental investigation of transitional natural convection in an air filled cube was conducted in this research. The characteristic dimension of the enclosure was H = 0.35 m, and data were collected in the middle plane of the cavity. The Rayleigh number range examined was 5.0×107≤Ra≤3.4×108. In Part I, the authors presented the mean velocity profiles in the enclosure and conducted heat transfer measurements on the hot wall. An expression between Nu and Ra numbers was concluded and compared against other correlations available in literature. In the present work, the authors present a complete description of the flow in the enclosure by quantifying the low turbulence regime developed in the cavity. This was accomplished by estimating Reynolds stresses, turbulent kinetic energy, vorticity, and swirling strength. Proper orthogonal decomposition (POD) was employed to analyze the flow fields obtained from the experimental data and retain the most salient features of the flow field. This study attempts to close the gap of available experimental data in the literature and provide experimental benchmark data that can be used to validate CFD codes since the estimated error from particle image velocimetry (PIV) measurements is within 1–2%.


2002 ◽  
Vol 2 (5-6) ◽  
pp. 47-55
Author(s):  
N.-S. Park ◽  
H. Park

Recognizing the significance of factual velocity fields in a rapid mixer, this study focuses on analyzing local velocity gradients in various mixer geometries with particle image velocimetry (PIV) and comparing the results of the analysis with the conventional G-value, for reviewing the roles of G-value in the current design and operation practices. The results of this study clearly show that many arguments and doubts are possible about the scientific correctness of G-value, and its current use. This is because the G-value attempts to represent the turbulent and complicated factual velocity field in a jar. Also, the results suggest that it is still a good index for representing some aspects of mixing condition, at least, mixing intensity. However, it cannot represent the distribution of velocity gradients in a jar, which is an important factor for mixing. This study as a result suggests developing another index for representing the distribution to be used with the G-value.


Author(s):  
Jean Brunette ◽  
Rosaire Mongrain ◽  
Rosaire Mongrain ◽  
Adrian Ranga ◽  
Adrian Ranga ◽  
...  

Myocardial infarction, also known as a heart attack, is the single leading cause of death in North America. It results from the rupture of an atherosclerotic plaque, which occurs in response to both mechanical stress and inflammatory processes. In order to validate computational models of atherosclerotic coronary arteries, a novel technique for molding realistic compliant phantom featuring injection-molded inclusions and multiple layers has been developed. This transparent phantom allows for particle image velocimetry (PIV) flow analysis and can supply experimental data to validate computational fluid dynamics algorithms and hypothesis.


2015 ◽  
Vol 137 (12) ◽  
Author(s):  
Nirmalendu Biswas ◽  
Souvick Chatterjee ◽  
Mithun Das ◽  
Amlan Garai ◽  
Prokash C. Roy ◽  
...  

This work investigates natural convection in an enclosure with localized heating on the bottom wall with a flushed or protruded heat source and cooled on the top and the side walls. Velocity field measurements are done by using 2D particle image velocimetry (PIV) technique. Proper orthogonal decomposition (POD) has been used to create low dimensional approximations of the system for predicting the flow structures. The POD-based analysis reveals the modal structure of the flow field and also allows reconstruction of velocity field at conditions other than those used in PIV study.


Author(s):  
Deb Banerjee ◽  
Rick Dehner ◽  
Ahmet Selamet ◽  
Keith Miazgowicz ◽  
Todd Brewer ◽  
...  

Abstract Understanding the velocity field at the inlet of an automotive turbocharger is critical in order to suppress the instabilities encountered by the compressor, extend its map and improve the impeller design. In the present study, two-dimensional particle image velocimetry experiments are carried out on a turbocharger compressor without any recirculating channel to investigate the planar flow structures on a cross-sectional plane right in front of the inducer at a rotational speed of 80 krpm. The objective of the study is to investigate the flow field in front of a compressor blade passage and quantify the velocity distributions along the blade span for different mass flow rates ranging from choke (77 g/s) to deep surge (13.6 g/s). It is observed that the flow field does not change substantially from choke to about 55 g/s, where flow reversal is known to start at this speed from earlier measurements. While the tangential velocity is less than 8 m/s, the radial velocity increases along the span to 17–20 m/s near the tip at high flow rates (55–77 g/s). As the mass flow rate is reduced below 55 g/s, the radial component starts decreasing and the tangential velocity increases rapidly. From about 5 m/s at 55 g/s, the tangential velocity at the blade tip exceeds 50 m/s at 50 g/s and reaches a maximum of about 135 m/s near surge. These time-averaged distributions are similar for different angular locations in front of the blade passage and do not exhibit any substantial azimuthal variation.


2002 ◽  
Author(s):  
Shankar Devasenathipathy ◽  
Rajiv Bharadwaj ◽  
Juan G. Santiago

This paper presents an experimental investigation of field amplified sample stacking (FASS) with micron resolution particle image velocimetry (μPIV). The preliminary experiments reported in this work show particle velocity fields in electrokinetic flow in a glass microchannel with a single buffer-buffer interface. The buffer-to-buffer conductivity ratio is 10. Stacking of latex microspheres (i.e., increases in their number density) in the presence of a background electroosmotic flow is demonstrated. The generation of an internal pressure gradient is quantified using μPIV. This work is part of an ongoing study of the spatial and temporal development of the velocity and concentration profiles of FASS systems.


Sign in / Sign up

Export Citation Format

Share Document