scholarly journals Regulation of intracellular Ca2+/CaMKII signaling by TRPV4 membrane translocation during osteoblastic differentiation

2019 ◽  
Vol 5 (5-6) ◽  
pp. 254-263
Author(s):  
Fen Hu ◽  
Yali Zhao ◽  
Zhenhai Hui ◽  
Fulin Xing ◽  
Jianyu Yang ◽  
...  

AbstractBone constantly remodels between resorption by osteoclasts and formation by osteoblasts; therefore the functions of osteoblasts are pivotal for maintaining homeostasis of bone mass. Transient receptor potential vanilloid 4 (TRPV4), a type of mechanosensitive channel, has been reported to be a key regulator in bone remodeling. However, the relationship between TRPV4 and osteoblast function remains largely elusive. Only little is known about the spatial distribution change of TRPV4 during osteoblastic differentiation and related signal events. Based on three-dimensional super-resolution microscopy, our results clearly showed a different distribution of TRPV4 in undifferentiated and differentiated osteoblasts, which reflected the plasma membrane translocation of TRPV4 along with prolonged differentiation. GSK1016790A (GSK101), the most potent agonist of TRPV4, triggered rapid calcium entry and calmodulin-dependent protein kinase II (CaMKII) phosphorylation via TRPV4 activation in a differentiation-dependent manner, indicating that the abundance of TRPV4 at the cell surface resulting from differentiation may be related to the modulation of Ca2+ response and CaMKII activity. These data provide compelling evidences for the plasma membrane translocation of TRPV4 during osteoblastic differentiation as well as demonstrate the regulation of downstream Ca2+/CaMKII signaling.

2015 ◽  
Vol 309 (7) ◽  
pp. F604-F616 ◽  
Author(s):  
R. Todd Alexander ◽  
Megan R. Beggs ◽  
Reza Zamani ◽  
Niels Marcussen ◽  
Sebastian Frische ◽  
...  

Plasma membrane Ca2+-ATPases (PMCAs) participate in epithelial Ca2+ transport and intracellular Ca2+ signaling. The Pmca4 isoform is enriched in distal nephron isolates and decreased in mice lacking the epithelial transient receptor potential vanilloid 5 Ca2+ channel. We therefore hypothesized that Pmca4 plays a significant role in transcellular Ca2+ flux and investigated the localization and regulation of Pmca4 in Ca2+-transporting epithelia. Using antibodies directed specifically against Pmca4, we found it expressed only in the smooth muscle layer of mouse and human intestines, whereas pan-specific Pmca antibodies detected Pmca1 in lateral membranes of enterocytes. In the kidney, Pmca4 showed broad localization to the distal nephron. In the mouse, expression was most abundant in segments coexpressing the epithelial ransient receptor potential vanilloid 5 Ca2+ channel. Significant, albeit lower, expression was also evident in the region encompassing the cortical thick ascending limbs, macula densa, and early distal tubules as well as smooth muscle layers surrounding renal vessels. In the human kidney, a similar pattern of distribution was observed, with the highest PMCA4 expression in Na+-Cl− cotransporter-positive tubules. Electron microscopy demonstrated Pmca4 localization in distal nephron cells at both the basolateral membrane and intracellular perinuclear compartments but not submembranous vesicles, suggesting rapid trafficking to the plasma membrane is unlikely to occur in vivo. Pmca4 expression was not altered by perturbations in Ca2+ balance, pointing to a housekeeping function of the pump in Ca2+-transporting epithelia. In conclusion, Pmca4 shows a divergent expression pattern in Ca2+-transporting epithelia, inferring diverse roles for this isoform not limited to transepithelial Ca2+ transport.


2021 ◽  
Vol 11 ◽  
Author(s):  
Ádám Horváth ◽  
Maja Payrits ◽  
Anita Steib ◽  
Boglárka Kántás ◽  
Tünde Biró-Süt ◽  
...  

Transient Receptor Potential (TRP) Vanilloid 1 and Ankyrin 1 (TRPV1, TRPA1) cation channels are expressed in nociceptive primary sensory neurons, and integratively regulate nociceptor and inflammatory functions. Lipid rafts are liquid-ordered plasma membrane microdomains rich in cholesterol, sphingomyelin and gangliosides. We earlier showed that lipid raft disruption inhibits TRPV1 and TRPA1 functions in primary sensory neuronal cultures. Here we investigated the effects of sphingomyelinase (SMase) cleaving membrane sphingomyelin and myriocin (Myr) prohibiting sphingolipid synthesis in mouse pain models of different mechanisms. SMase (50 mU) or Myr (1 mM) pretreatment significantly decreased TRPV1 activation (capsaicin)-induced nocifensive eye-wiping movements by 37 and 41%, respectively. Intraplantar pretreatment by both compounds significantly diminished TRPV1 stimulation (resiniferatoxin)-evoked thermal allodynia developing mainly by peripheral sensitization. SMase (50 mU) also decreased mechanical hyperalgesia related to both peripheral and central sensitizations. SMase (50 mU) significantly reduced TRPA1 activation (formalin)-induced acute nocifensive behaviors by 64% in the second, neurogenic inflammatory phase. Myr, but not SMase altered the plasma membrane polarity related to the cholesterol composition as shown by fluorescence spectroscopy. These are the first in vivo results showing that sphingolipids play a key role in lipid raft integrity around nociceptive TRP channels, their activation and pain sensation. It is concluded that local SMase administration might open novel perspective for analgesic therapy.


Cosmetics ◽  
2020 ◽  
Vol 7 (2) ◽  
pp. 47
Author(s):  
Hwa Sun Ryu ◽  
Jeong-Yeon Choi ◽  
Kyeong-Sun Lee ◽  
Jung-No Lee ◽  
Chun Mong Lee ◽  
...  

Heat shock treatment-induced skin aging causes a thickened epidermis, increased matrix metalloproteinase (MMP)-1 expression, collagen degradation, and deep wrinkles. In this study, we investigated the effect of manassantin B in preventing heat shock treatment-induced aging. We first separated manassantin B (MB) from the roots of Saururus chinensis, and the structure was identified using 1H- and 13C-NMR spectroscopy. RT-PCR and western blotting were applied to investigate the anti-aging effect of manassantin B. Manassantin B decreased MMP-1 expression through transient receptor potential vanilloid (TRPV) 1 channel inhibition and significantly increased procollagen expression. In addition, manassantin B suppressed MAPK phosphorylation in a dose-dependent manner. Our results suggest that manassantin B, the active ingredient in S. chinensis, can be effectively used to inhibit heat shock treatment-induced skin aging.


2020 ◽  
Vol 295 (29) ◽  
pp. 9986-9997
Author(s):  
Nicholas W. Zaccor ◽  
Charlotte J. Sumner ◽  
Solomon H. Snyder

G-protein–coupled receptors (GPCRs) are a ubiquitously expressed family of receptor proteins that regulate many physiological functions and other proteins. They act through two dissociable signaling pathways: the exchange of GDP to GTP by linked G-proteins and the recruitment of β-arrestins. GPCRs modulate several members of the transient receptor potential (TRP) channel family of nonselective cation channels. How TRP channels reciprocally regulate GPCR signaling is less well-explored. Here, using an array of biochemical approaches, including immunoprecipitation and fluorescence, calcium imaging, phosphate radiolabeling, and a β-arrestin–dependent luciferase assay, we characterize a GPCR–TRP channel pair, angiotensin II receptor type 1 (AT1R), and transient receptor potential vanilloid 4 (TRPV4), in primary murine choroid plexus epithelial cells and immortalized cell lines. We found that AT1R and TRPV4 are binding partners and that activation of AT1R by angiotensin II (ANGII) elicits β-arrestin–dependent inhibition and internalization of TRPV4. Activating TRPV4 with endogenous and synthetic agonists inhibited angiotensin II–mediated G-protein–associated second messenger accumulation, AT1R receptor phosphorylation, and β-arrestin recruitment. We also noted that TRPV4 inhibits AT1R phosphorylation by activating the calcium-activated phosphatase calcineurin in a Ca2+/calmodulin–dependent manner, preventing β-arrestin recruitment and receptor internalization. These findings suggest that when TRP channels and GPCRs are co-expressed in the same tissues, many of these channels can inhibit GPCR desensitization.


2014 ◽  
Vol 143 (5) ◽  
pp. 559-575 ◽  
Author(s):  
Jose Mercado ◽  
Rachael Baylie ◽  
Manuel F. Navedo ◽  
Can Yuan ◽  
John D. Scott ◽  
...  

Transient receptor potential vanilloid 4 (TRPV4) channels are Ca2+-permeable, nonselective cation channels expressed in multiple tissues, including smooth muscle. Although TRPV4 channels play a key role in regulating vascular tone, the mechanisms controlling Ca2+ influx through these channels in arterial myocytes are poorly understood. Here, we tested the hypothesis that in arterial myocytes the anchoring protein AKAP150 and protein kinase C (PKC) play a critical role in the regulation of TRPV4 channels during angiotensin II (AngII) signaling. Super-resolution imaging revealed that TRPV4 channels are gathered into puncta of variable sizes along the sarcolemma of arterial myocytes. Recordings of Ca2+ entry via single TRPV4 channels (“TRPV4 sparklets”) suggested that basal TRPV4 sparklet activity was low. However, Ca2+ entry during elementary TRPV4 sparklets was ∼100-fold greater than that during L-type CaV1.2 channel sparklets. Application of the TRPV4 channel agonist GSK1016790A or the vasoconstrictor AngII increased the activity of TRPV4 sparklets in specific regions of the cells. PKC and AKAP150 were required for AngII-induced increases in TRPV4 sparklet activity. AKAP150 and TRPV4 channel interactions were dynamic; activation of AngII signaling increased the proximity of AKAP150 and TRPV4 puncta in arterial myocytes. Furthermore, local stimulation of diacylglycerol and PKC signaling by laser activation of a light-sensitive Gq-coupled receptor (opto-α1AR) resulted in TRPV4-mediated Ca2+ influx. We propose that AKAP150, PKC, and TRPV4 channels form dynamic subcellular signaling domains that control Ca2+ influx into arterial myocytes.


2019 ◽  
Vol 116 (18) ◽  
pp. 8869-8878 ◽  
Author(s):  
Shangyu Dang ◽  
Mark K. van Goor ◽  
Daniel Asarnow ◽  
YongQiang Wang ◽  
David Julius ◽  
...  

TRPV5 (transient receptor potential vanilloid 5) is a unique calcium-selective TRP channel essential for calcium homeostasis. Unlike other TRPV channels, TRPV5 and its close homolog, TRPV6, do not exhibit thermosensitivity or ligand-dependent activation but are constitutively open at physiological membrane potentials and modulated by calmodulin (CaM) in a calcium-dependent manner. Here we report high-resolution electron cryomicroscopy structures of truncated and full-length TRPV5 in lipid nanodiscs, as well as of a TRPV5 W583A mutant and TRPV5 in complex with CaM. These structures highlight the mechanism of calcium regulation and reveal a flexible stoichiometry of CaM binding to TRPV5.


2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Xiaoqian Gao ◽  
Sheryl Koch ◽  
Min Jiang ◽  
Nathan Robbins ◽  
Wenfeng Cai ◽  
...  

TRPV2 is a member of transient receptor potential vanilloid (TRPV) family. As a Ca 2+ channel, it can detect various stimuli such as noxious heat (>52°C), membrane stretching, as well as a number of exogenous chemicals, including probenecid, 2-aminoethoxydiphenyl borate, and lysophospholipids. TRPV2 has been found in many tissue types, including neuron and kidney, but the function of TRPV2 in the heart is poorly understood. Here we show TRPV2 is involved in the Ca 2+ cycling process and then regulates the function of the cardiomyocyte. We identified the mRNA expression of TRPV2 in the cardiac tissues of mice using real-time PCR. By performing echocardiography we found that administration of probenecid, a selective TRPV2 agonist, increased cardiac ejection fraction in mice. This positive inotropic effect of probenecid was also shown in Langendorff perfused mice hearts as increased peak +dP/dt. In isolated ventricular myocytes, we found that probenecid significantly increased myocyte fractional shortening in a dose-dependent manner, which was fully blocked by ruthenium red, a non-selective TRPV2 blocker. We also performed fluorescent studies to examine myocyte Ca 2+ cycling. We found that probenecid significantly increased Ca 2+ transient and resting-state Ca 2+ sparks and this effect was eliminated by ruthenium red. When Ca 2+ storage in sarcoplasmic reticulum (SR) was depleted with caffeine, and SR Ca 2+ reuptake was blocked by thapsigargin at the same time, probenecid did not show any effects in either Ca 2+ transient or Ca 2+ sparks. Our patch clamp experiments indicate that probenecid treatment does not trigger any significant transmembrane Ca 2+ influx. These results point to the important role of TRPV2 in regulating SR Ca 2+ release. In conclusion, TRPV2 activation may contribute to increased SR Ca 2+ release, leading to the enhancement of myocyte contractility. Thus, TRPV2 plays a potentially important role in controlling the cellular function of heart.


Sign in / Sign up

Export Citation Format

Share Document