scholarly journals Aggregation-Induced Emission in Electrochemiluminescence: Advances and Perspectives

2021 ◽  
Vol 379 (4) ◽  
Author(s):  
Guillermo Moreno-Alcántar ◽  
Alessandro Aliprandi ◽  
Luisa De Cola

Abstract The discovery of aggregation-induced electrochemiluminescence (AIECL) in 2017 opened new research paths in the quest for novel, more efficient emitters and platforms for biological and environmental sensing applications. The great abundance of fluorophores presenting aggregation-induced emission in aqueous media renders AIECL a potentially powerful tool for future diagnostics. In the short time following this discovery, many scientists have found the phenomenon interesting, with research findings contributing to advances in the comprehension of the processes involved and in attempts to design new sensing platforms. Herein, we explore these advances and reflect on the future directions to take for the development of sensing devices based on AIECL. Graphic abstract

MENDEL ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 15-22
Author(s):  
Ivan Zelinka ◽  
Tran Trong Dao

This paper is discussing our new research direction in the Voynich manuscript research. While our previous papers have been dealing with the research that has been based on fractal property analyses or graph properties analyses, where the graph has been constructed from the Voynich manuscript word sequences (Fig. 1), this paper discusses another kind of research on Voynich manuscript. This research is focused on the compassion of the letters or alphabets from Voynich manuscript with another selected alphabets from a different dialect, in that case, dialect from the Indian language. The reason is to point out the possibility that we can identify the origin of the Voynich manuscript alphabets based on the graphical conversion between letters from different dialects. Because this research is a very wide and deep topic, we publish in this paper only basic ideas, simulations and discuss all problems which have been found during those experimentation as well as outlining of the future directions of the research in an outlined way.


2007 ◽  
Author(s):  
Amy Colbert ◽  
Bruce Louis Rich ◽  
Timothy A. Judge

Author(s):  
Natalia Nowakowska

Our three existing master narratives of the early Reformation in Poland are all over a century old and mutually contradictory, drawing on different sources to serve differing confessional and national/ist agendas. This chapter offers a fresh narrative of the impact of Lutheranism on the Polish composite monarchy to c.1540, synthesizing these older accounts and updating them with new research findings. This is a narrative in three parts: early signs (1517–24), the great Reformation year (1525), and aftershocks (1526–40). The chapter discusses the challenges of measuring ‘Lutheran’ sentiment, sets these Polish-Prussian events clearly in their comparative European context, and considers what implications they might have for that bigger, familiar tale. It stresses the precocity of Sigismund I’s monarchy, which saw the most far-reaching urban and violent Reformation in 1520s Europe (Danzig), a peasant Reformation rising, and Christendom’s first territorial-princely Reformation, in Ducal Prussia.


2020 ◽  
Vol 6 (6) ◽  
pp. 223-244
Author(s):  
Jiaying Xie ◽  
Yiliang Jin ◽  
Kelong Fan ◽  
Xiyun Yan

AbstractArtificial nanorobot is a type of robots designed for executing complex tasks at nanoscale. The nanorobot system is typically consisted of four systems, including logic control, driving, sensing and functioning. Considering the subtle structure and complex functionality of nanorobot, the manufacture of nanorobots requires designable, controllable and multi-functional nanomaterials. Here, we propose that nanozyme is a promising candidate for fabricating nanorobots due to its unique properties, including flexible designs, controllable enzyme-like activities, and nano-sized physicochemical characters. Nanozymes may participate in one system or even combine several systems of nanorobots. In this review, we summarize the advances on nanozyme-based systems for fabricating nanorobots, and prospect the future directions of nanozyme for constructing nanorobots. We hope that the unique properties of nanozymes will provide novel ideas for designing and fabricating nanorobotics.


Eye ◽  
2021 ◽  
Author(s):  
Sana Hamid ◽  
Parul Desai ◽  
Pirro Hysi ◽  
Jennifer M. Burr ◽  
Anthony P. Khawaja

AbstractEffective population screening for glaucoma would enable earlier diagnosis and prevention of irreversible vision loss. The UK National Screening Committee (NSC) recently published a review that examined the viability, effectiveness and appropriateness of a population-based screening programme for primary open-angle glaucoma (POAG). In our article, we summarise the results of the review and discuss some future directions that may enable effective population screening for glaucoma in the future. Two key questions were addressed by the UK NSC review; is there a valid, accurate screening test for POAG, and does evidence exist that screening reduces morbidity from POAG compared with standard care. Six new studies were identified since the previous 2015 review. The review concluded that screening for glaucoma in adults is not recommended because there is no clear evidence for a sufficiently accurate screening test or for better outcomes with screening compared to current care. The next UK NSC review is due to be conducted in 2023. One challenge for POAG screening is that the relatively low disease prevalence results in too many false-positive referrals, even with an accurate test. In the future, targeted screening of a population subset with a higher prevalence of glaucoma may be effective. Recent developments in POAG polygenic risk prediction and deep learning image analysis offer potential avenues to identifying glaucoma-enriched sub-populations. Until such time, opportunistic case finding through General Ophthalmic Services remains the primary route for identification of glaucoma in the UK and greater public awareness of the service would be of benefit.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2084
Author(s):  
Kostas Nizamis ◽  
Alkinoos Athanasiou ◽  
Sofia Almpani ◽  
Christos Dimitrousis ◽  
Alexander Astaras

Recent advances in the field of neural rehabilitation, facilitated through technological innovation and improved neurophysiological knowledge of impaired motor control, have opened up new research directions. Such advances increase the relevance of existing interventions, as well as allow novel methodologies and technological synergies. New approaches attempt to partially overcome long-term disability caused by spinal cord injury, using either invasive bridging technologies or noninvasive human–machine interfaces. Muscular dystrophies benefit from electromyography and novel sensors that shed light on underlying neuromotor mechanisms in people with Duchenne. Novel wearable robotics devices are being tailored to specific patient populations, such as traumatic brain injury, stroke, and amputated individuals. In addition, developments in robot-assisted rehabilitation may enhance motor learning and generate movement repetitions by decoding the brain activity of patients during therapy. This is further facilitated by artificial intelligence algorithms coupled with faster electronics. The practical impact of integrating such technologies with neural rehabilitation treatment can be substantial. They can potentially empower nontechnically trained individuals—namely, family members and professional carers—to alter the programming of neural rehabilitation robotic setups, to actively get involved and intervene promptly at the point of care. This narrative review considers existing and emerging neural rehabilitation technologies through the perspective of replacing or restoring functions, enhancing, or improving natural neural output, as well as promoting or recruiting dormant neuroplasticity. Upon conclusion, we discuss the future directions for neural rehabilitation research, diagnosis, and treatment based on the discussed technologies and their major roadblocks. This future may eventually become possible through technological evolution and convergence of mutually beneficial technologies to create hybrid solutions.


2021 ◽  
Author(s):  
Yushu Shi ◽  
Huiyan Xu ◽  
Tongyao Liu ◽  
Shah Zeb ◽  
Yong Nie ◽  
...  

The scheme of the structure of this review includes an introduction from the metal oxide nanomaterials’ synthesis to application in H2 gas sensors—a vision from the past to the future.


Sign in / Sign up

Export Citation Format

Share Document