scholarly journals A new dataset of dog breed images and a benchmark for finegrained classification

2020 ◽  
Vol 6 (4) ◽  
pp. 477-487
Author(s):  
Ding-Nan Zou ◽  
Song-Hai Zhang ◽  
Tai-Jiang Mu ◽  
Min Zhang

AbstractIn this paper, we introduce an image dataset for fine-grained classification of dog breeds: the Tsinghua Dogs Dataset. It is currently the largest dataset for fine-grained classification of dogs, including 130 dog breeds and 70,428 real-world images. It has only one dog in each image and provides annotated bounding boxes for the whole body and head. In comparison to previous similar datasets, it contains more breeds and more carefully chosen images for each breed. The diversity within each breed is greater, with between 200 and 7000+ images for each breed. Annotation of the whole body and head makes the dataset not only suitable for the improvement of finegrained image classification models based on overall features, but also for those locating local informative parts. We show that dataset provides a tough challenge by benchmarking several state-of-the-art deep neural models. The dataset is available for academic purposes at https://cg.cs.tsinghua.edu.cn/ThuDogs/.

2021 ◽  
Vol 7 (7) ◽  
pp. 106
Author(s):  
Nicolò Oreste Pinciroli Pinciroli Vago ◽  
Federico Milani ◽  
Piero Fraternali ◽  
Ricardo da Silva Torres

Iconography studies the visual content of artworks by considering the themes portrayed in them and their representation. Computer Vision has been used to identify iconographic subjects in paintings and Convolutional Neural Networks enabled the effective classification of characters in Christian art paintings. However, it still has to be demonstrated if the classification results obtained by CNNs rely on the same iconographic properties that human experts exploit when studying iconography and if the architecture of a classifier trained on whole artwork images can be exploited to support the much harder task of object detection. A suitable approach for exposing the process of classification by neural models relies on Class Activation Maps, which emphasize the areas of an image contributing the most to the classification. This work compares state-of-the-art algorithms (CAM, Grad-CAM, Grad-CAM++, and Smooth Grad-CAM++) in terms of their capacity of identifying the iconographic attributes that determine the classification of characters in Christian art paintings. Quantitative and qualitative analyses show that Grad-CAM, Grad-CAM++, and Smooth Grad-CAM++ have similar performances while CAM has lower efficacy. Smooth Grad-CAM++ isolates multiple disconnected image regions that identify small iconographic symbols well. Grad-CAM produces wider and more contiguous areas that cover large iconographic symbols better. The salient image areas computed by the CAM algorithms have been used to estimate object-level bounding boxes and a quantitative analysis shows that the boxes estimated with Grad-CAM reach 55% average IoU, 61% GT-known localization and 31% mAP. The obtained results are a step towards the computer-aided study of the variations of iconographic elements positioning and mutual relations in artworks and open the way to the automatic creation of bounding boxes for training detectors of iconographic symbols in Christian art images.


Author(s):  
Jonas Austerjost ◽  
Robert Söldner ◽  
Christoffer Edlund ◽  
Johan Trygg ◽  
David Pollard ◽  
...  

Machine vision is a powerful technology that has become increasingly popular and accurate during the last decade due to rapid advances in the field of machine learning. The majority of machine vision applications are currently found in consumer electronics, automotive applications, and quality control, yet the potential for bioprocessing applications is tremendous. For instance, detecting and controlling foam emergence is important for all upstream bioprocesses, but the lack of robust foam sensing often leads to batch failures from foam-outs or overaddition of antifoam agents. Here, we report a new low-cost, flexible, and reliable foam sensor concept for bioreactor applications. The concept applies convolutional neural networks (CNNs), a state-of-the-art machine learning system for image processing. The implemented method shows high accuracy for both binary foam detection (foam/no foam) and fine-grained classification of foam levels.


Mathematics ◽  
2021 ◽  
Vol 9 (19) ◽  
pp. 2502
Author(s):  
Natalia Vanetik ◽  
Marina Litvak

Definitions are extremely important for efficient learning of new materials. In particular, mathematical definitions are necessary for understanding mathematics-related areas. Automated extraction of definitions could be very useful for automated indexing educational materials, building taxonomies of relevant concepts, and more. For definitions that are contained within a single sentence, this problem can be viewed as a binary classification of sentences into definitions and non-definitions. In this paper, we focus on automatic detection of one-sentence definitions in mathematical and general texts. We experiment with different classification models arranged in an ensemble and applied to a sentence representation containing syntactic and semantic information, to classify sentences. Our ensemble model is applied to the data adjusted with oversampling. Our experiments demonstrate the superiority of our approach over state-of-the-art methods in both general and mathematical domains.


2020 ◽  
Vol 9 (5) ◽  
pp. 1882-1889
Author(s):  
Umar Akbar Khan ◽  
Saira Moin U. Din ◽  
Saima Anwar Lashari ◽  
Murtaja Ali Saare ◽  
Muhammad Ilyas

Fine-grained visual categorization (FGVC) dealt with objects belonging to one class with intra-class differences into subclasses. FGVC is challenging due to the fact that it is very difficult to collect enough training samples. This study presents a novel image dataset named Cowbreefor FGVC. Cowbree dataset contains 4000 images belongs to eight different cow breeds. Images are properly categorized under different breed names (labels) based on different texture and color features with the help of experts. While evidence shows that the existing dataset are of low quality, targeting few breeds with less number of images. To validate the dataset, three state of the art classifiers sequential minimal optimization (SMO), Multiclass classifier and J48 were used. Their results in term of accuracy are 68.81%, 55.81% and 57.45% respectively. Where results shows that SMO out performed with 68.81% accuracy, 68.4% precision and 68.8% recall.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Enbiao Jing ◽  
Haiyang Zhang ◽  
ZhiGang Li ◽  
Yazhi Liu ◽  
Zhanlin Ji ◽  
...  

Based on a convolutional neural network (CNN) approach, this article proposes an improved ResNet-18 model for heartbeat classification of electrocardiogram (ECG) signals through appropriate model training and parameter adjustment. Due to the unique residual structure of the model, the utilized CNN layered structure can be deepened in order to achieve better classification performance. The results of applying the proposed model to the MIT-BIH arrhythmia database demonstrate that the model achieves higher accuracy (96.50%) compared to other state-of-the-art classification models, while specifically for the ventricular ectopic heartbeat class, its sensitivity is 93.83% and the precision is 97.44%.


2020 ◽  
Vol 11 ◽  
Author(s):  
Guofeng Yang ◽  
Yong He ◽  
Yong Yang ◽  
Beibei Xu

Fine-grained image classification is a challenging task because of the difficulty in identifying discriminant features, it is not easy to find the subtle features that fully represent the object. In the fine-grained classification of crop disease, visual disturbances such as light, fog, overlap, and jitter are frequently encountered. To explore the influence of the features of crop leaf images on the classification results, a classification model should focus on the more discriminative regions of the image while improving the classification accuracy of the model in complex scenes. This paper proposes a novel attention mechanism that effectively utilizes the informative regions of an image, and describes the use of transfer learning to quickly construct several fine-grained image classification models of crop disease based on this attention mechanism. This study uses 58,200 crop leaf images as a dataset, including 14 different crops and 37 different categories of healthy/diseased crops. Among them, different diseases of the same crop have strong similarities. The NASNetLarge fine-grained classification model based on the proposed attention mechanism achieves the best classification effect, with an F1 score of up to 93.05%. The results show that the proposed attention mechanism effectively improves the fine-grained classification of crop disease images.


2019 ◽  
Vol 43 (3) ◽  
pp. 149-158
Author(s):  
Yoon Soo Park ◽  
Amy Morales ◽  
Linette Ross ◽  
Miguel Paniagua

Learners and educators in the health professions have called for more fine-grained information (subscores) from assessments, beyond a single overall test score. However, due to concerns over reliability, there have been limited uses of subscores in practice. Recent advances in latent class analysis have made contributions in subscore reporting by using diagnostic classification models (DCMs), which allow reliable classification of examinees into fine-grained proficiency levels (subscore profiles). This study examines the innovative and practical application of DCM framework to health professions educational assessments using retrospective large-scale assessment data from the basic and clinical sciences: National Board of Medical Examiners Subject Examinations in pathology ( n = 2,006) and medicine ( n = 2,351). DCMs were fit and analyzed to generate subscores and subscore profiles of examinees. Model fit indices, classification (reliability), and parameter estimates indicated that DCMs had good psychometric properties including consistent classification of examinees into subscore profiles. Results showed a range of useful information including varying levels of subscore distributions. The DCM framework can be a promising approach to report subscores in health professions education. Consistency of classification was high, demonstrating reliable results at fine-grained subscore levels, allowing for targeted and specific feedback to learners.


2016 ◽  
Vol 13 (01) ◽  
pp. 1602001
Author(s):  
Federico L. Moro ◽  
Michael Gienger ◽  
Ambarish Goswami ◽  
Oussama Khatib ◽  
Eiichi Yoshida

Research in whole-body control (WBC) aims to contribute to provide robots with those capabilities that are necessary to move and perform in real world scenarios. Until recent years, limitations on hardware relegated WBC to almost purely theoretical research. Recently, a growing number of experimental platforms have become available (in particular, torque-controlled humanoids). This new opportunity has triggered the deployment on real robots of the theoretical outcomes of research in the field. This is backed up by a number of new research projects and initiatives addressing issues in this domain, including the Darpa robotic challenge (DRC). The goal of this special issue is to provide a clear representation of what is the state-of-the-art in WBC, and to help identifying what steps still need to be taken to have humanoid robots moving out of research laboratories to real world applications.


Sign in / Sign up

Export Citation Format

Share Document