scholarly journals Vehicle handling improvements through Steer-by-Wire

Author(s):  
Jan Sterthoff ◽  
Roman Henze ◽  
Ferit Küçükay

AbstractThis paper focuses on handling improvements enabled through Steer-by-Wire systems, which have increasingly become subject of R&D, as they not only offer the potential for improving vehicle handling but also have many advantages in combination with automated driving. Handling improvements through a steering ratio depending on vehicle speed, as well as steering-wheel angle, are known from Active Front Steering systems. A new overall concept is proposed, that also takes into account lateral and longitudinal acceleration as well as steering rate, which are all available signals in a production car. The overall concept is designed in an optimization process to modify a range of established characteristic parameters known from open-loop maneuvers and the objective evaluation of vehicle handling. In this context, validated models for a vehicle and a Steer-by-Wire system are used to obtain reliable results in simulation. Possibilities for tuning the non-linear steering behavior as well as improvements in the dynamic behavior, especially in yaw damping and response time, are demonstrated.

2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Yandong Han ◽  
Lei He ◽  
Xiang Wang ◽  
Changfu Zong

Steer-by-wire system can improve the performance of vehicle handling stability. Removing the mechanical linkages between the front wheels and the steering wheel leads to a key technique of force feedback for steer-by-wire system. In view of the characteristic of variable torque transmission ratio for steer-by-wire system, this paper proposes a method for designing torque ratio based on the steering wheel torque characteristic for steer-by-wire system. It converts the torque ratio design into equivalent assist torque design by analyzing their relationship. It achieves the torque ratio design at different conditions based on the negative equivalent assist torque characteristic curve. Simulations and vehicle experiments are conducted by the proposed method, and the results show that the design goal has been achieved and the steering wheel torque characteristic obtained is very similar to that of the reference car.


2013 ◽  
Vol 336-338 ◽  
pp. 1037-1040 ◽  
Author(s):  
Hong Yu Zheng ◽  
Bing Yu Wang ◽  
Chang Fu Zong

In the steer by wire system of vehicle, a joystick can instead of the steering wheel. A control algorithm based on variable steering ratio is developed on the basis of vehicle speed and joystick steering angle. By verifying the control algorithm with the vehicle model from CarSim, it shows that this proposed algorithm can effective carry out steering intention of drivers, which enhance the steer comfort in low speed driving and steer handling in high speed driving and effectively improve the vehicle maneuverability.


2013 ◽  
Vol 336-338 ◽  
pp. 734-737
Author(s):  
Hong Yu Zheng ◽  
Ya Ning Han ◽  
Chang Fu Zong

In order to solve the problem of road feel feedback of vehicle steer-by-wire (SBW) system based on joystick, a road feel control strategy was established to analyze the road feel theory of traditional steer system, which included return, assist and damp control module. By verifying the computer simulation results with the control strategy from software of CarSim and Matlab/Simulink, it shows that the proposed strategy can effective get road feel in different vehicle speed conditions and could improve the vehicle maneuverability to achieve desired steering feel by different drivers.


2018 ◽  
Author(s):  
Jaepoong Lee ◽  
Yi kyongsu ◽  
Kwangil Kim ◽  
Byungrim Lee ◽  
Dongpil Lee ◽  
...  

Author(s):  
Srivatsan Srinivasan ◽  
Matthias J. Schmid ◽  
Venkat N. Krovi

Abstract Incorporation of electronic yaw stabilization in on-road vehicles can take many forms. Although the most popular ones are differential braking and torque distribution, a potentially better alternative would be the inclusion of a controller into the steering process. However, this is not often pursued in mechanically-coupled steering systems since the controller could work against the driver’s intentions creating potential challenges to safety. The growing adoption of steer-by-wire (SbW) systems now in autonomous/semi-autonomous vehicles offers an opportunity to simplify the incorporation of such steering-controller based assistance. Most current steering-assistance systems focus either on adaptive steering control (adaptive power steering and gear ratios) or on total steering control in autopilot functions (lane keeping control). Such steering-controllers (incorporated via SbW modality) can improve driving performance and maneuverability and contribute to the overall suite of active-safety vehicle systems. In this study, we introduce a new pure-feedforward (open loop) controller for the steer-by-wire system based on the concept of reference shaping control aimed at reducing the vibration/oscillation caused in vehicles during fast (evasive) maneuvers.


2013 ◽  
Vol 19 (1) ◽  
pp. 61-65 ◽  
Author(s):  
Sheikh Muhamad Hafiz Fahami ◽  
Hairi Zamzuri ◽  
Saiful Amri Mazlan ◽  
Noraishikin Binti Zulkarnain

2013 ◽  
Vol 373-375 ◽  
pp. 138-141
Author(s):  
Hai Xia Zhao ◽  
Zhi En Lv

The loader's steer-by-wire system combines the automatic control system and hydraulic system. The system cancels the mechanical or hydraulic connection between the steering wheel and the front wheels, which existed in the original steering system, optimizing the adaptation of the loaders steering systems road feeling to its working conditions, convenient for the integration with other systems, and harmonization of control. This paper puts forward a new measurement of a steer-by-wire system steering angel. It aims at more accurate corner detection, will design to optimize loader's steer-by-wire hydraulic system signal detection, and better meet the actual needs.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 1111-1118
Author(s):  
Daigo Uchino ◽  
Xiaojun Liu ◽  
Hideaki Kato ◽  
Takayoshi Narita

Ultra-compact electric vehicles has excellent environmental performance and are extremely convenient for short-distance travel. However, owing to cabin space limitations, it is difficult to mount power steering. Therefore, there is a need to increase the gear ratio of the rack and pinion to change steering angle because such vehicles need light torque to steer. However, increasing the gear ratio requires more rotations of the steering wheel. Our research group focused on developing a steer-by-wire system (SBWS) that freely controls the steering torque. Although we evaluated the burden when a driver rotates the steering wheel in one direction in a previous study. This study assumed the actual steering operation in an SBWS. And then we evaluate muscle burden when a driver steers with continuous changing of the steering direction.


Sign in / Sign up

Export Citation Format

Share Document