scholarly journals Optimizing facility siting for probabilistic collection and distribution of information in support of urban transportation

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Timothy C. Matisziw ◽  
Ashkan Gholamialam

AbstractCollecting and receiving information about the state of a transportation system is essential to effective planning for intelligent transportation systems, whether it be on the part of individual users or managers of the system. However, efforts to collect or convey information about a system’s status often require considerable investment in infrastructure/technology. Moreover, given variations in the development and use of transportation systems over time, uncertainties exist as to where and when demand for such services may be needed. To address these problems, a model for minimizing the cost of siting and/or collecting information while ensuring specified levels of demand are served at an acceptable level of reliability is proposed. To demonstrate the characteristics of the proposed formulation, it is coupled with another planning objective and applied to identify optimal sites for information provision/collection in a transportation system. Model solutions are then derived for multiple scenarios of system flow to explore how variations in the use of a transportation system can impact siting configurations.

Author(s):  
Kyu-Ok Kim ◽  
L. R. Rilett

In recent years, microsimulation has become increasingly important in transportation system modeling. A potential issue is whether these models adequately represent reality and whether enough data exist with which to calibrate these models. There has been rapid deployment of intelligent transportation system (ITS) technologies in most urban areas of North America in the last 10 years. While ITSs are developed primarily for real-time traffic operations, the data are typically archived and available for traffic microsimulation calibration. A methodology, based on the sequential simplex algorithm, that uses ITS data to calibrate microsimulation models is presented. The test bed is a 23-km section of Interstate 10 in Houston, Texas. Two microsimulation models, CORSIM and TRANSIMS, were calibrated for two different demand matrices and three periods (morning peak, evening peak, and off-peak). It was found for the morning peak that the simplex algorithm had better results then either the default values or a simple, manual calibration. As the level of congestion decreased, the effectiveness of the simplex approach also decreased, as compared with standard techniques.


2014 ◽  
Vol 624 ◽  
pp. 567-570
Author(s):  
Dan Ping Wang ◽  
Kun Yuan Hu

Intelligent Transportation System is the primary means of solving the city traffic problem. The information technology, the communication, the electronic control technology and the system integration technology and so on applies effectively in the transportation system by researching rationale model, thus establishes real-time, accurate, the highly effective traffic management system plays the role in the wide range. Traffic flow guidance system is one of cores of Intelligent Transportation Systems. It is based on modern technologies, such as computer, communication network, and so on. Supplying the most superior travel way and the real-time transportation information according to the beginning and ending point of the journey. The journey can promptly understand in the transportation status of road network according to the guidance system, then choosing the best route to reach destination.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6309
Author(s):  
Mohammad Peyman ◽  
Pedro J. Copado ◽  
Rafael D. Tordecilla ◽  
Leandro do C. Martins ◽  
Fatos Xhafa ◽  
...  

With the emergence of fog and edge computing, new possibilities arise regarding the data-driven management of citizens’ mobility in smart cities. Internet of Things (IoT) analytics refers to the use of these technologies, data, and analytical models to describe the current status of the city traffic, to predict its evolution over the coming hours, and to make decisions that increase the efficiency of the transportation system. It involves many challenges such as how to deal and manage real and huge amounts of data, and improving security, privacy, scalability, reliability, and quality of services in the cloud and vehicular network. In this paper, we review the state of the art of IoT in intelligent transportation systems (ITS), identify challenges posed by cloud, fog, and edge computing in ITS, and develop a methodology based on agile optimization algorithms for solving a dynamic ride-sharing problem (DRSP) in the context of edge/fog computing.These algorithms allow us to process, in real time, the data gathered from IoT systems in order to optimize automatic decisions in the city transportation system, including: optimizing the vehicle routing, recommending customized transportation modes to the citizens, generating efficient ride-sharing and car-sharing strategies, create optimal charging station for electric vehicles and different services within urban and interurban areas. A numerical example considering a DRSP is provided, in which the potential of employing edge/fog computing, open data, and agile algorithms is illustrated.


Frequenz ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Arun Kumar Singh ◽  
Arun Kumar ◽  
Samarendra Nath Sur ◽  
Rabindranath Bera ◽  
Bansibadan Maji

Abstract This article proposes a design and implementation of array Microstrip Patch antenna of configuration 2 × 2 at an operating frequency of 3.5 GHz. The proposed design takes a dimension of 80 mm × 92 mm × 1.6 mm with four radiating elements arranged in rectangular form with an optimized separation between the patches. All the radiating elements were connected through a corporate series network with an inset feed to have better impedance matching. The model gives an efficiency of 90.99% with a bandwidth of 510 MHz and with fractal configuration, the bandwidth further enhances to 1.12 GHz. The maximum gain measured was found as 11.01 dBi at θ = 10° and ɸ = 360° and 10.45 dBi with fractal configuration. The designed antenna is proposed to be used in RADAR which will be used in the intelligent transportation system for the detection of nearby (short-range) vehicles in the blind zone. This kind of Radar also finds its application in collision avoidance and activating airbags/break boosting and thus helping mankind by saving lives. The article gives an idea of the use of an array antenna in intelligent transportation system for better gain and efficient results.


Author(s):  
Ahmad Saifizul Abdullah ◽  
Kim Hai Loo ◽  
Noor Azuan Abu Osman ◽  
Mohd Zamri Zainon

Kawalan stereng automatik adalah satu komponen penting dalam pengautomatan lebuhraya, yang kini diselidik di seluruh dunia di bawah beberapa program Intelligent Transportation System (ITS). ITS berpotensi meningkatkan kapasiti lebuhraya yang sedia ada dengan penggunaan yang lebih selamat dan lebih efisien terhadap ruang yang sedia ada. Sistem ini akan terdiri daripada konsep pemanduan “hands–off” secara menyeluruh yang mana kenderaan akan dikawal secara automatik apabila ia memasuki sistem itu. Untuk mencapai objektif di atas, pengawal PID dan konsep dasar penglihatan ke atas sistem kawalan stereng automatik digunakan untuk membolehkan kenderaan menjejak rujukan di dalam pelbagai keadaan. Keputusan simulasi menunjukkan bahawa sistem kawalan yang dicadangkan mencapai objektifnya meskipun ia kurang lasak untuk mengekalkan prestasinya di dalam pelbagai keadaan. Kata kunci: Kawalan stereng automatik, dinamik kenderaan, sistem penglihatan, kawalan PID Automatic steering control is a vital component of highway automation, currently investigated worldwide in several Intelligent Transportation Systems (ITS) programs. The promise of Intelligent Transportation System lies in the possibility of increasing the capacity of existing highways by safer and more efficient use of available space. This system will include completely “hands–off” driving in which vehicles are fully automatically controlled once they enter the system. In order to achieve the above objective, the Proportional–Integral–Derivative (PID) controller and vision based concept to an automatic steering control system is used to cause the vehicle to track the reference under various conditions. Simulation results show that the proposed control system achieved its objective even though it is less robust in maintaining its performance under various conditions. Key words: Automatic steering control, vehicle dynamics, vision system, PID controller


Author(s):  
Leo Tan Wee Hin ◽  
R. Subramaniam

Transportation is often the bane of urban societies. Traffic gridlocks and inadequate availability of a comprehensive and affordable public transportation system further accentuate the problem. This chapter focuses on the Singapore experience with intelligent transportation solutions to alleviate a range of problems, thus contributing to its positioning as a smart city. We focus on seven issues: public transportation using modern mass rapid transit trains; congestion control using electronic road pricing; electronic monitoring advisory systems to guide road users on adverse conditions or incidents on roads; computerized traffic signaling systems to streamline the throughput of vehicles in roadways; intelligent dispatch of taxis, which helps to minimize idle cruising time; parking guidance systems to alert motorists of the nearest car park, in the process decreasing the level of floating traffic on roads; and integrated ticketing systems to promote inter-modal transfer. A unique funding mechanism that has led to the evolution of a modern and efficient public transportation system is also elaborated. Being a city state and a living laboratory of intelligent transportation systems that have attracted international attention, it is suggested that there are some lessons to be drawn from the Singapore experience in managing transportation problems in smart cities.


2014 ◽  
Vol 484-485 ◽  
pp. 1101-1105
Author(s):  
Jing Ya Chen

Intelligent transportation system based on multi-agent, become a important method, also is to solve the complex traffic problems. In the geography of the property of the agent in the heterogeneous environment cause implementation difficulties such as interoperability requirements, make the agent of unity between software platforms as a potential infrastructure. This paper puts forward a model and the more intelligent transportation system based on SOA. The model includes four major parts: infrastructure, services, agency, and coordination agent. Elements The model of the agent into different levels and groups, including organization agent, regional control agent, agent, road section road intersection vehicle control agent, the acting to complete different function and goal. Based on the SOA multi-agent technology, can realize the cross-platform loosely coupled, and interoperability and heritage reuse in distributed and heterogeneous network traffic system.


2018 ◽  
Vol 2 (4) ◽  
Author(s):  
Qiang Shi ◽  
Lei Wang ◽  
Taojie Wang

With the continuous development and advancement of computer technology, big data guarantees the establishment of an urban intelligent transportation system, a solid environmental basis to reform its application, and the construction of a deeply integrated data mechanism for big data-driven traffic management. This review paper briefly elaborates on the basic characteristics and sources of traffic big data as well as expound on the problems and application mechanisms of big data in intelligent transportation systems.


Sign in / Sign up

Export Citation Format

Share Document