Design and implementation of microstrip array antenna for intelligent transportation systems application

Frequenz ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Arun Kumar Singh ◽  
Arun Kumar ◽  
Samarendra Nath Sur ◽  
Rabindranath Bera ◽  
Bansibadan Maji

Abstract This article proposes a design and implementation of array Microstrip Patch antenna of configuration 2 × 2 at an operating frequency of 3.5 GHz. The proposed design takes a dimension of 80 mm × 92 mm × 1.6 mm with four radiating elements arranged in rectangular form with an optimized separation between the patches. All the radiating elements were connected through a corporate series network with an inset feed to have better impedance matching. The model gives an efficiency of 90.99% with a bandwidth of 510 MHz and with fractal configuration, the bandwidth further enhances to 1.12 GHz. The maximum gain measured was found as 11.01 dBi at θ = 10° and ɸ = 360° and 10.45 dBi with fractal configuration. The designed antenna is proposed to be used in RADAR which will be used in the intelligent transportation system for the detection of nearby (short-range) vehicles in the blind zone. This kind of Radar also finds its application in collision avoidance and activating airbags/break boosting and thus helping mankind by saving lives. The article gives an idea of the use of an array antenna in intelligent transportation system for better gain and efficient results.

2014 ◽  
Vol 624 ◽  
pp. 567-570
Author(s):  
Dan Ping Wang ◽  
Kun Yuan Hu

Intelligent Transportation System is the primary means of solving the city traffic problem. The information technology, the communication, the electronic control technology and the system integration technology and so on applies effectively in the transportation system by researching rationale model, thus establishes real-time, accurate, the highly effective traffic management system plays the role in the wide range. Traffic flow guidance system is one of cores of Intelligent Transportation Systems. It is based on modern technologies, such as computer, communication network, and so on. Supplying the most superior travel way and the real-time transportation information according to the beginning and ending point of the journey. The journey can promptly understand in the transportation status of road network according to the guidance system, then choosing the best route to reach destination.


Author(s):  
Ahmad Saifizul Abdullah ◽  
Kim Hai Loo ◽  
Noor Azuan Abu Osman ◽  
Mohd Zamri Zainon

Kawalan stereng automatik adalah satu komponen penting dalam pengautomatan lebuhraya, yang kini diselidik di seluruh dunia di bawah beberapa program Intelligent Transportation System (ITS). ITS berpotensi meningkatkan kapasiti lebuhraya yang sedia ada dengan penggunaan yang lebih selamat dan lebih efisien terhadap ruang yang sedia ada. Sistem ini akan terdiri daripada konsep pemanduan “hands–off” secara menyeluruh yang mana kenderaan akan dikawal secara automatik apabila ia memasuki sistem itu. Untuk mencapai objektif di atas, pengawal PID dan konsep dasar penglihatan ke atas sistem kawalan stereng automatik digunakan untuk membolehkan kenderaan menjejak rujukan di dalam pelbagai keadaan. Keputusan simulasi menunjukkan bahawa sistem kawalan yang dicadangkan mencapai objektifnya meskipun ia kurang lasak untuk mengekalkan prestasinya di dalam pelbagai keadaan. Kata kunci: Kawalan stereng automatik, dinamik kenderaan, sistem penglihatan, kawalan PID Automatic steering control is a vital component of highway automation, currently investigated worldwide in several Intelligent Transportation Systems (ITS) programs. The promise of Intelligent Transportation System lies in the possibility of increasing the capacity of existing highways by safer and more efficient use of available space. This system will include completely “hands–off” driving in which vehicles are fully automatically controlled once they enter the system. In order to achieve the above objective, the Proportional–Integral–Derivative (PID) controller and vision based concept to an automatic steering control system is used to cause the vehicle to track the reference under various conditions. Simulation results show that the proposed control system achieved its objective even though it is less robust in maintaining its performance under various conditions. Key words: Automatic steering control, vehicle dynamics, vision system, PID controller


2014 ◽  
Vol 484-485 ◽  
pp. 1101-1105
Author(s):  
Jing Ya Chen

Intelligent transportation system based on multi-agent, become a important method, also is to solve the complex traffic problems. In the geography of the property of the agent in the heterogeneous environment cause implementation difficulties such as interoperability requirements, make the agent of unity between software platforms as a potential infrastructure. This paper puts forward a model and the more intelligent transportation system based on SOA. The model includes four major parts: infrastructure, services, agency, and coordination agent. Elements The model of the agent into different levels and groups, including organization agent, regional control agent, agent, road section road intersection vehicle control agent, the acting to complete different function and goal. Based on the SOA multi-agent technology, can realize the cross-platform loosely coupled, and interoperability and heritage reuse in distributed and heterogeneous network traffic system.


2018 ◽  
Vol 2 (4) ◽  
Author(s):  
Qiang Shi ◽  
Lei Wang ◽  
Taojie Wang

With the continuous development and advancement of computer technology, big data guarantees the establishment of an urban intelligent transportation system, a solid environmental basis to reform its application, and the construction of a deeply integrated data mechanism for big data-driven traffic management. This review paper briefly elaborates on the basic characteristics and sources of traffic big data as well as expound on the problems and application mechanisms of big data in intelligent transportation systems.


2021 ◽  
Vol 1 (161) ◽  
pp. 212-217
Author(s):  
О. Stepanov ◽  
А. Venger

The article is devoted to the consideration of the concept of "Intelligent transportation system" – ITS in modern society. The main world concepts of ITS development, which are aimed at the organization of road traffic in order to comply with road safety, are analyzed. The authors concluded that ITS is the most effective way to qualitatively solve road safety problems.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Gongxing Yan ◽  
Yanping Chen

The core of smart city is to build intelligent transportation system.. An intelligent transportation system can analyze the traffic data with time and space characteristics in the city and acquire rich and valuable knowledge, and it is of great significance to realize intelligent traffic scheduling and urban planning. This article specifically introduces the extensive application of urban transportation infrastructure data in the construction and development of smart cities. This article first explains the related concepts of big data and intelligent transportation systems and uses big data to illustrate the operation of intelligent transportation systems in the construction of smart cities. Based on the machine learning and deep learning method, this paper is aimed at the passenger flow and traffic flow in the smart city transportation system. This paper deeply excavates the time, space, and other hidden features. In this paper, the traffic volume of the random sections in the city is predicted by using the graph convolutional neural network (GCNN) model, and the data are compared with the other five models (VAR, FNN, GCGRU, STGCN, and DGCNN). The experimental results show that compared with the other 4 models, the GCNN model has an increase of 8% to 10% accuracy and 15% fault tolerance. In forecasting morning and evening peak traffic flow, the accuracy of the GCNN model is higher than that of other models, and its trend is basically consistent with the actual traffic volume, the predicted results can reflect the actual traffic flow data well. Aimed at the application of intelligent transportation in an intelligent city, this paper proposes a machine learning prediction model based on big data, and this is of great significance for studying the mechanical learning of such problems. Therefore, the research of this paper has a good implementation prospect and academic value.


Author(s):  
Taghi Shahgholi ◽  
Amir Sheikhahmadi ◽  
Keyhan Khamforoosh ◽  
Sadoon Azizi

AbstractIncreased number of the vehicles on the streets around the world has led to several problems including traffic congestion, emissions, and huge fuel consumption in many regions. With advances in wireless and traffic technologies, the Intelligent Transportation System (ITS) has been introduced as a viable solution for solving these problems by implementing more efficient use of the current infrastructures. In this paper, the possibility of using cellular-based Low-Power Wide-Area Network (LPWAN) communications, LTE-M and NB-IoT, for ITS applications has been investigated. LTE-M and NB-IoT are designed to provide long range, low power and low cost communication infrastructures and can be a promising option which has the potential to be employed immediately in real systems. In this paper, we have proposed an architecture to employ the LPWAN as a backhaul infrastructure for ITS and to understand the feasibility of the proposed model, two applications with low and high delay requirements have been examined: road traffic monitoring and emergency vehicle management. Then, the performance of using LTE-M and NB-IoT for providing backhaul communication infrastructure has been evaluated in a realistic simulation environment and compared for these two scenarios in terms of end-to-end latency per user. Simulation of Urban MObility has been used for realistic traffic generation and a Python-based program has been developed for evaluation of the communication system. The simulation results demonstrate the feasibility of using LPWAN for ITS backhaul infrastructure mostly in favor of the LTE-M over NB-IoT.


Author(s):  
Kyu-Ok Kim ◽  
L. R. Rilett

In recent years, microsimulation has become increasingly important in transportation system modeling. A potential issue is whether these models adequately represent reality and whether enough data exist with which to calibrate these models. There has been rapid deployment of intelligent transportation system (ITS) technologies in most urban areas of North America in the last 10 years. While ITSs are developed primarily for real-time traffic operations, the data are typically archived and available for traffic microsimulation calibration. A methodology, based on the sequential simplex algorithm, that uses ITS data to calibrate microsimulation models is presented. The test bed is a 23-km section of Interstate 10 in Houston, Texas. Two microsimulation models, CORSIM and TRANSIMS, were calibrated for two different demand matrices and three periods (morning peak, evening peak, and off-peak). It was found for the morning peak that the simplex algorithm had better results then either the default values or a simple, manual calibration. As the level of congestion decreased, the effectiveness of the simplex approach also decreased, as compared with standard techniques.


Author(s):  
Muhammad Rusyadi Ramli ◽  
Riesa Krisna Astuti Sakir ◽  
Dong-Seong Kim

This paper presents fog-based intelligent transportation systems (ITS) architecture for traffic light optimization. Specifically, each intersection consists of traffic lights equipped with a fog node. The roadside unit (RSU) node is deployed to monitor the traffic condition and transmit it to the fog node. The traffic light center (TLC) is used to collect the traffic condition from the fog nodes of all intersections. In this work, two traffic light optimization problems are addressed where each problem will be processed either on fog node or TLC according to their requirements. First, the high latency for the vehicle to decide the dilemma zone is addressed. In the dilemma zone, the vehicle may hesitate whether to accelerate or decelerate that can lead to traffic accidents if the decision is not taken quickly. This first problem is processed on the fog node since it requires a real-time process to accomplish. Second, the proposed architecture aims each intersection aware of its adjacent traffic condition. Thus, the TLC is used to estimate the total incoming number of vehicles based on the gathered information from all fog nodes of each intersection. The results show that the proposed fog-based ITS architecture has better performance in terms of network latency compared to the existing solution in which relies only on TLC.


2021 ◽  
Vol 03 (01) ◽  
pp. 33-41
Author(s):  
Vittorio Astarita ◽  
Vincenzo Pasquale Giofrè ◽  
Giuseppe Guido ◽  
Alessandro Vitale

This paper intends to explore the convergence of some technological innovations that could lead to new cooperative Intelligent Transportation Systems (ITS). The technologies that might soon converge and lead to some new developments are: the Blockchain Technology (BT) concept, Internet of Things (IoT) and Connected and Automated Vehicles (CAV). Advantages and disadvantages of the new concepts founding a new ITS system are discussed in this conceptual paper. Blockchain technology has been recently introduced and many research ideas have been presented for application in the transportation sector. In this paper, we discuss a system that is based on a dedicated blockchain, able to involve both drivers and city administrations in the adoption of promising and innovative technologies that will create cooperation among connected vehicles. The proposed blockchain-based system can allow city administrators to reward drivers when they are willing to share travel data. The system manages in a special way the creation of rewards which are assigned to drivers and institutions participating actively in the system. Moreover, the system allows keeping a complete track of all transactions and interactions between drivers and city management on a completely open and shared platform. The main idea is to combine connected vehicles with BT to promote Cooperative ITS use, a better use of infrastructures and a more sustainable eco-system of cryptocurrencies. A short description of BT is introduced to evidence energy problems of sustainability in the implementation of Proof of Work (PoW) that is adopted by many blockchains.


Sign in / Sign up

Export Citation Format

Share Document