scholarly journals Modularity affects the robustness of scale-free model and real-world social networks under betweenness and degree-based node attack

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Quang Nguyen ◽  
Tuan V. Vu ◽  
Hanh-Duyen Dinh ◽  
Davide Cassi ◽  
Francesco Scotognella ◽  
...  

AbstractIn this paper we investigate how the modularity of model and real-world social networks affect their robustness and the efficacy of node attack (removal) strategies based on node degree (ID) and node betweenness (IB). We build Barabasi–Albert model networks with different modularity by a new ad hoc algorithm that rewire links forming networks with community structure. We traced the network robustness using the largest connected component (LCC). We find that when model networks present absent or low modular structure ID strategy is more effective than IB to decrease the LCC. Conversely, in the case the model network present higher modularity, the IB strategy becomes the most effective to fragment the LCC. In addition, networks with higher modularity present a signature of a 1st order percolation transition and a decrease of the LCC with one or several abrupt changes when nodes are removed, for both strategies; differently, networks with non-modular structure or low modularity show a 2nd order percolation transition networks when nodes are removed. Last, we investigated how the modularity of the network structure evaluated by the modularity indicator (Q) affect the network robustness and the efficacy of the attack strategies in 12 real-world social networks. We found that the modularity Q is negatively correlated with the robustness of the real-world social networks for both the node attack strategies, especially for the IB strategy (p-value < 0.001). This result indicates how real-world networks with higher modularity (i.e. with higher community structure) may be more fragile to node attack. The results presented in this paper unveil the role of modularity and community structure for the robustness of networks and may be useful to select the best node attack strategies in network.

2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Vincenza Carchiolo ◽  
Marco Grassia ◽  
Alessandro Longheu ◽  
Michele Malgeri ◽  
Giuseppe Mangioni

AbstractMany systems are today modelled as complex networks, since this representation has been proven being an effective approach for understanding and controlling many real-world phenomena. A significant area of interest and research is that of networks robustness, which aims to explore to what extent a network keeps working when failures occur in its structure and how disruptions can be avoided. In this paper, we introduce the idea of exploiting long-range links to improve the robustness of Scale-Free (SF) networks. Several experiments are carried out by attacking the networks before and after the addition of links between the farthest nodes, and the results show that this approach effectively improves the SF network correct functionalities better than other commonly used strategies.


2021 ◽  
Vol 9 ◽  
Author(s):  
Zhaoxing Li ◽  
Qionghai Liu ◽  
Li Chen

A complex network can crash down due to disturbances which significantly reduce the network’s robustness. It is of great significance to study on how to improve the robustness of complex networks. In the literature, the network rewire mechanism is one of the most widely adopted methods to improve the robustness of a given network. Existing network rewire mechanism improves the robustness of a given network by re-connecting its nodes but keeping the total number of edges or by adding more edges to the given network. In this work we propose a novel yet efficient network rewire mechanism which is based on multiobjective optimization. The proposed rewire mechanism simultaneously optimizes two objective functions, i.e., maximizing network robustness and minimizing edge rewire operations. We further develop a multiobjective discrete partite swarm optimization algorithm to solve the proposed mechanism. Compared to existing network rewire mechanisms, the developed mechanism has two advantages. First, the proposed mechanism does not require specific constraints on the rewire mechanism to the studied network, which makes it more feasible for applications. Second, the proposed mechanism can suggest a set of network rewire choices each of which can improve the robustness of a given network, which makes it be more helpful for decision makings. To validate the effectiveness of the proposed mechanism, we carry out experiments on computer-generated Erdős–Rényi and scale-free networks, as well as real-world complex networks. The results demonstrate that for each tested network, the proposed multiobjective optimization based edge rewire mechanism can recommend a set of edge rewire solutions to improve its robustness.


Author(s):  
Natarajan Meghanathan

The authors present correlation analysis between the centrality values observed for nodes (a computationally lightweight metric) and the maximal clique size (a computationally hard metric) that each node is part of in complex real-world network graphs. They consider the four common centrality metrics: degree centrality (DegC), eigenvector centrality (EVC), closeness centrality (ClC), and betweenness centrality (BWC). They define the maximal clique size for a node as the size of the largest clique (in terms of the number of constituent nodes) the node is part of. The real-world network graphs studied range from regular random network graphs to scale-free network graphs. The authors observe that the correlation between the centrality value and the maximal clique size for a node increases with increase in the spectral radius ratio for node degree, which is a measure of the variation of the node degree in the network. They observe the degree-based centrality metrics (DegC and EVC) to be relatively better correlated with the maximal clique size compared to the shortest path-based centrality metrics (ClC and BWC).


Author(s):  
Natarajan Meghanathan

We present correlation analysis between the centrality values observed for nodes (a computationally lightweight metric) and the maximal clique size (a computationally hard metric) that each node is part of in complex real-world network graphs. We consider the four common centrality metrics: degree centrality (DegC), eigenvector centrality (EVC), closeness centrality (ClC) and betweenness centrality (BWC). We define the maximal clique size for a node as the size of the largest clique (in terms of the number of constituent nodes) the node is part of. The real-world network graphs studied range from regular random network graphs to scale-free network graphs. We observe that the correlation between the centrality value and the maximal clique size for a node increases with increase in the spectral radius ratio for node degree, which is a measure of the variation of the node degree in the network. We observe the degree-based centrality metrics (DegC and EVC) to be relatively better correlated with the maximal clique size compared to the shortest path-based centrality metrics (ClC and BWC).


2018 ◽  
Vol 32 (11) ◽  
pp. 1850128 ◽  
Author(s):  
Youquan Wang ◽  
Feng Yu ◽  
Shucheng Huang ◽  
Juanjuan Tu ◽  
Yan Chen

Networks with high propensity to synchronization are desired in many applications ranging from biology to engineering. In general, there are two ways to enhance the synchronizability of a network: link rewiring and/or link weighting. In this paper, we propose a new link weighting strategy based on the concept of the neighborhood subgroup. The neighborhood subgroup of a node i through node j in a network, i.e. [Formula: see text], means that node u belongs to [Formula: see text] if node u belongs to the first-order neighbors of j (not include i). Our proposed weighting schema used the local and global structural properties of the networks such as the node degree, betweenness centrality and closeness centrality measures. We applied the method on scale-free and Watts–Strogatz networks of different structural properties and show the good performance of the proposed weighting scheme. Furthermore, as model networks cannot capture all essential features of real-world complex networks, we considered a number of undirected and unweighted real-world networks. To the best of our knowledge, the proposed weighting strategy outperformed the previously published weighting methods by enhancing the synchronizability of these real-world networks.


2018 ◽  
Vol 32 (26) ◽  
pp. 1850319 ◽  
Author(s):  
Fuzhong Nian ◽  
Longjing Wang ◽  
Zhongkai Dang

In this paper, a new spreading network was constructed and the corresponding immunizations were proposed. The social ability of individuals in the real human social networks was reflected by the node strength. The negativity and positivity degrees were also introduced. And the edge weights were calculated by the negativity and positivity degrees, respectively. Based on these concepts, a new asymmetric edge weights scale-free network which was more close to the real world was established. The comparing experiments indicate that the proposed immunization is priority to the acquaintance immunization, and close to the target immunization.


2011 ◽  
Vol 25 (19) ◽  
pp. 1603-1617 ◽  
Author(s):  
LI-LI MA ◽  
XIN JIANG ◽  
ZHAN-LI ZHANG ◽  
ZHI-MING ZHENG

Network resilience is vital for the survival of networks, and scale-free networks are fragile when confronted with targeted attacks. We survey network robustness to targeted attacks from the viewpoint of network clients by designing a unique mechanism based on the undeniable roles of network clients in real-world networks. Especially, the mechanism here is designed on the actual phenomenon that the vital nodes in a network may be totally different for clients with different demands. Concretely, node client-demand centrality is proposed to quantify the contributions of nodes to network clients and we show that it is a proper index to assign an order to network nodes according to node importance for network clients. Great discrepancy of node importance order for clients with different demands is found in scale-free networks with four different kinds of link weight distribution, which suggests that the destructiveness of fatal attacks on networks can be greatly reduced by adjusting the demands of network clients.


Author(s):  
Hongtao Liu ◽  
Linghu Fen ◽  
Jie Jian ◽  
Long Chen

Overlapping community is a response to the real network structure in social networks and in real society in order to solve the problems such as the parameters of the existing overlapping community discovery algorithm being too large, excessive overlap and no guarantee of stability of multiple runs. In this paper, the method of calculating the node degree of membership was proposed, and an overlapping community discovery algorithm based on the local optimal expansion cohesion idea was designed. Firstly, the initial core community was constructed with the highest importance node and its neighbor nodes. Secondly, the core community was extended by node attribution degree until the termination condition of the algorithm was satisfied. Finally, the experimental results were compared with the existing algorithms. The experiments show that the result of the division by the improved algorithm has been significantly improved compared to the other algorithms, and the community structure after the division is more reasonable.


2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Zhen Li ◽  
Zhisong Pan ◽  
Yanyan Zhang ◽  
Guopeng Li ◽  
Guyu Hu

Community detection is of great importance which enables us to understand the network structure and promotes many real-world applications such as recommendation systems. The heterogeneous social networks, which contain multiple social relations and various user generated content, make the community detection problem more complicated. Particularly, social relations and user generated content are regarded as link information and content information, respectively. Since the two types of information indicate a common community structure from different perspectives, it is better to mine them jointly to improve the detection accuracy. Some detection algorithms utilizing both link and content information have been developed. However, most works take the private community structure of a single data source as the common one, and some methods take extra time transforming the content data into link data compared with mining directly. In this paper, we propose a framework based on regularized joint nonnegative matrix factorization (RJNMF) to utilize link and content information jointly to enhance the community detection accuracy. In the framework, we develop joint NMF to analyze link and content information simultaneously and introduce regularization to obtain the common community structure directly. Experimental results on real-world datasets show the effectiveness of our method.


2017 ◽  
Vol 31 (29) ◽  
pp. 1750267 ◽  
Author(s):  
Meng Tian ◽  
Xianpei Wang ◽  
Zhengcheng Dong ◽  
Guowei Zhu ◽  
Jiachuang Long ◽  
...  

Cascading failures have been widely analyzed in interdependent networks with different coupling preferences from microscopic and macroscopic perspectives in recent years. Plenty of real-world interdependent infrastructures, representing as interdependent networks, exhibit community structure, one of the most important mesoscopic structures, and partial coupling preferences, which can affect cascading failures in interdependent networks. In this paper, we propose the partial random coupling in communities, investigating cascading failures in interdependent modular scale-free networks under inner attacks and hub attacks. We mainly analyze the effects of the discoupling probability and the intermodular connection probability on cascading failures in interdependent networks. We find that increasing either the dicoupling probability or the intermodular connection probability can enhance the network robustness under both hub attacks and inner attacks. We also note that the community structure can prevent cascading failures spreading globally in entire interdependent networks. Finally, we obtain the result that if we want to efficiently improve the robustness of interdependent networks and reduce the protection cost, the intermodular connection probability should be protected preferentially, implying that improving the robustness of a single network is the fundamental method to enhance the robustness of the entire interdependent networks.


Sign in / Sign up

Export Citation Format

Share Document