Physicochemical characteristics of silver nanoparticles: influence of carbonate alkalinity

Author(s):  
F. Y. Alzoubi ◽  
Jehad. Y. Al-zou’by ◽  
Ihsan. A. Aljarrah ◽  
Kamel. K. Al-Zboon ◽  
H. M. Al-khateeb ◽  
...  
Pharmaceutics ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 1244
Author(s):  
Ioanna K. Siakavella ◽  
Fotini Lamari ◽  
Dimitrios Papoulis ◽  
Malvina Orkoula ◽  
Patroula Gkolfi ◽  
...  

Silver nanoparticles (AgNPs) were synthesized using hydroalcoholic extracts of dittany (Origanum dictamnus), sage (Salvia officinalis), sea buckthorn (Elaeagnus rhamnoides, syn. Hippophae rhamnoides), and calendula (Calendula officinalis) as reducing agents. AgNPs synthesized using NaBH4 and citric acid were used as control. The impact of the origin of the extract and preparation conditions (light, temperature, reaction time) on the properties of the synthesized AgNPs was investigated. The structure, morphology, composition, physicochemical characteristics, and colloidal stability were characterized using dynamic laser scattering (DLS), ultraviolet-visible spectrophotometry (UV–/Vis), XRD, X-ray fluorescence (XRF), TEM, and FTΙR. The reduction of total phenolic and flavonoid content of the extracts after the reaction of AgNPs synthesis was also determined. Low IC50 values for all types of AgNPs revealed good antioxidant activity, attributable to the phenolic and flavonoid content of their surface. The results suggest that plant extract selection is important to the green synthesis of AgNPs because it affects the kinetics of their synthesis as well as their morphology, physicochemical characteristics, and colloidal stability. In vitro permeation studies on porcine skin revealed that AgNPs remained at the upper layers of stratum corneum and did not penetrate the skin barrier after 4 h of cutaneous application suggesting the safety of their application on intact skin for a relatively short time.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1358
Author(s):  
Yvonne Kohl ◽  
Michelle Hesler ◽  
Roland Drexel ◽  
Lukas Kovar ◽  
Stephan Dähnhardt-Pfeiffer ◽  
...  

A better understanding of their interaction with cell-based tissue is a fundamental prerequisite towards the safe production and application of engineered nanomaterials. Quantitative experimental data on the correlation between physicochemical characteristics and the interaction and transport of engineered nanomaterials across biological barriers, in particular, is still scarce, thus hampering the development of effective predictive non-testing strategies. Against this background, the presented study investigated the translocation of gold and silver nanoparticles across the gastrointestinal barrier along with related biological effects using an in vitro 3D-triple co-culture cell model. Standardized in vitro assays and quantitative polymerase chain reaction showed no significant influence of the applied nanoparticles on both cell viability and generation of reactive oxygen species. Transmission electron microscopy indicated an intact cell barrier during the translocation study. Single particle ICP-MS revealed a time-dependent increase of translocated nanoparticles independent of their size, shape, surface charge, and stability in cell culture medium. This quantitative data provided the experimental basis for the successful mathematical description of the nanoparticle transport kinetics using a non-linear mixed effects modeling approach. The results of this study may serve as a basis for the development of predictive tools for improved risk assessment of engineered nanomaterials in the future.


2018 ◽  
Vol 216 ◽  
pp. 476-484 ◽  
Author(s):  
Ariane Pandolfo Silveira ◽  
Cínthia Caetano Bonatto ◽  
Cláudio Afonso Pinho Lopes ◽  
Luis Miguel Ramirez Rivera ◽  
Luciano Paulino Silva

Author(s):  
Arezki Tagnit-Hamou ◽  
Shondeep L. Sarkar

All the desired properties of cement primarily depend on the physicochemical characteristics of clinker from which the cement is produced. The mineralogical composition of the clinker forms the most important parameter influencing these properties.Optical microscopy provides reasonably accurate information pertaining to the thermal history of the clinker, while XRDA still remains the proven method of phase identification, and bulk chemical composition of the clinker can be readily obtained from XRFA. Nevertheless, all these microanalytical techniques are somewhat limited in their applications, and SEM/EDXA combination fills this gap uniquely by virtue of its high resolution imaging capability and possibility of instantaneous chemical analysis of individual phases.Inhomogeneities and impurities in the raw meal, influence of kiln conditions such as sintering and cooling rate being directly related to the microstructure can be effectively determined by SEM/EDXA. In addition, several physical characteristics of cement, such as rhcology, grindability and hydraulicity also depend on the clinker microstructure.


2019 ◽  
Vol 64 (1) ◽  
pp. 45-53 ◽  
Author(s):  
Elias S.J. Arnér

Abstract Selenocysteine (Sec), the sulfur-to-selenium substituted variant of cysteine (Cys), is the defining entity of selenoproteins. These are naturally expressed in many diverse organisms and constitute a unique class of proteins. As a result of the physicochemical characteristics of selenium when compared with sulfur, Sec is typically more reactive than Cys while participating in similar reactions, and there are also some qualitative differences in the reactivities between the two amino acids. This minireview discusses the types of modifications of Sec in selenoproteins that have thus far been experimentally validated. These modifications include direct covalent binding through the Se atom of Sec to other chalcogen atoms (S, O and Se) as present in redox active molecular motifs, derivatization of Sec via the direct covalent binding to non-chalcogen elements (Ni, Mb, N, Au and C), and the loss of Se from Sec resulting in formation of dehydroalanine. To understand the nature of these Sec modifications is crucial for an understanding of selenoprotein reactivities in biological, physiological and pathophysiological contexts.


2019 ◽  
Vol 107 (3) ◽  
pp. 305
Author(s):  
Mengmei Geng ◽  
Yuting Long ◽  
Tongqing Liu ◽  
Zijuan Du ◽  
Hong Li ◽  
...  

Surface-enhanced Raman Scattering (SERS) fiber probe provides abundant interaction area between light and materials, permits detection within limited space and is especially useful for remote or in situ detection. A silver decorated SERS fiber optic probe was prepared by hydrothermal method. This method manages to accomplish the growth of silver nanoparticles and its adherence on fiber optic tip within one step, simplifying the synthetic procedure. The effects of reaction time on phase composition, surface plasmon resonance property and morphology were investigated by X-ray diffraction analysis (XRD), ultraviolet-visible absorption spectrum (UV-VIS absorption spectrum) and scanning electron microscope (SEM). The results showed that when reaction time is prolonged from 4–8 hours at 180 °C, crystals size and size distribution of silver nanoparticles increase. Furthermore, the morphology, crystal size and distribution density of silver nanoparticles evolve along with reaction time. A growth mechanism based on two factors, equilibrium between nucleation and growth, and the existence of PVP, is hypothesized. The SERS fiber probe can detect rhodamin 6G (R6G) at the concentration of 10−6 M. This SERS fiber probe exhibits promising potential in organic dye and pesticide residue detection.


Sign in / Sign up

Export Citation Format

Share Document