scholarly journals Configuration spaces of disks in an infinite strip

Author(s):  
Hannah Alpert ◽  
Matthew Kahle ◽  
Robert MacPherson
2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Song He ◽  
Zhenjie Li ◽  
Prashanth Raman ◽  
Chi Zhang

Abstract Stringy canonical forms are a class of integrals that provide α′-deformations of the canonical form of any polytopes. For generalized associahedra of finite-type cluster algebras, there exist completely rigid stringy integrals, whose configuration spaces are the so-called binary geometries, and for classical types are associated with (generalized) scattering of particles and strings. In this paper, we propose a large class of rigid stringy canonical forms for another class of polytopes, generalized permutohedra, which also include associahedra and cyclohedra as special cases (type An and Bn generalized associahedra). Remarkably, we find that the configuration spaces of such integrals are also binary geometries, which were suspected to exist for generalized associahedra only. For any generalized permutohedron that can be written as Minkowski sum of coordinate simplices, we show that its rigid stringy integral factorizes into products of lower integrals for massless poles at finite α′, and the configuration space is binary although the u equations take a more general form than those “perfect” ones for cluster cases. Moreover, we provide an infinite class of examples obtained by degenerations of type An and Bn integrals, which have perfect u equations as well. Our results provide yet another family of generalizations of the usual string integral and moduli space, whose physical interpretations remain to be explored.


2021 ◽  
pp. 108128652199641
Author(s):  
Mikhail D Kovalenko ◽  
Irina V Menshova ◽  
Alexander P Kerzhaev ◽  
Guangming Yu

We construct exact solutions of two inhomogeneous boundary value problems in the theory of elasticity for a half-strip with free long sides in the form of series in Papkovich–Fadle eigenfunctions: (a) the half-strip end is free and (b) the half-strip end is firmly clamped. Initially, we construct a solution of the inhomogeneous problem for an infinite strip. Subsequently, the corresponding solutions for a half-strip are added to this solution, whereby the boundary conditions at the end are satisfied. The Papkovich orthogonality relation is used to solve the inhomogeneous problem in a strip.


2007 ◽  
Vol 146 (1) ◽  
pp. 5474-5482
Author(s):  
Margareta Boege ◽  
Luis Montejano
Keyword(s):  

Robotica ◽  
2021 ◽  
pp. 1-30
Author(s):  
Ümit Yerlikaya ◽  
R.Tuna Balkan

Abstract Instead of using the tedious process of manual positioning, an off-line path planning algorithm has been developed for military turrets to improve their accuracy and efficiency. In the scope of this research, an algorithm is proposed to search a path in three different types of configuration spaces which are rectangular-, circular-, and torus-shaped by providing three converging options named as fast, medium, and optimum depending on the application. With the help of the proposed algorithm, 4-dimensional (D) path planning problem was realized as 2-D + 2-D by using six sequences and their options. The results obtained were simulated and no collision was observed between any bodies in these three options.


The problem involves the determination of a biharmonic generalized plane-stress function satisfying certain boundary conditions. We expand the stress function in a series of non-orthogonal eigenfunctions. Each of these is expanded in a series of orthogonal functions which satisfy a certain fourth-order ordinary differential equation and the boundary conditions implied by the fact that the sides are stress-free. By this method the coefficients involved in the biharmonic stress function corresponding to any arbitrary combination of stress on the end can be obtained directly from two numerical matrices published here The method is illustrated by four examples which cast light on the application of St Venant’s principle to the strip. In a further paper by one of the authors, the method will be applied to the problem of the finite rectangle.


Sign in / Sign up

Export Citation Format

Share Document