A New Solution for Optimal Control of Fractional Convection–Reaction–Diffusion Equation Using Rational Barycentric Interpolation

2019 ◽  
Vol 46 (5) ◽  
pp. 1307-1340
Author(s):  
Majid Darehmiraki ◽  
Arezou Rezazadeh
2021 ◽  
Author(s):  
El Hassan Zerrik ◽  
Abderrahman Ait Aadi

In this chapter, we study a problem of gradient optimal control for a bilinear reaction–diffusion equation evolving in a spatial domain Ω⊂Rn using distributed and bounded controls. Then, we minimize a functional constituted of the deviation between the desired gradient and the reached one and the energy term. We prove the existence of an optimal control solution of the minimization problem. Then this control is characterized as solution to an optimality system. Moreover, we discuss two special cases of controls: the ones are time dependent, and the others are space dependent. A numerical approach is given and successfully illustrated by simulations.


Author(s):  
Mohammad Ramezani

AbstractThe main propose of this paper is presenting an efficient numerical scheme to solve WSGD scheme for one- and two-dimensional distributed order fractional reaction–diffusion equation. The proposed method is based on fractional B-spline basics in collocation method which involve Caputo-type fractional derivatives for $$0 < \alpha < 1$$ 0 < α < 1 . The most significant privilege of proposed method is efficient and quite accurate and it requires relatively less computational work. The solution of consideration problem is transmute to the solution of the linear system of algebraic equations which can be solved by a suitable numerical method. The finally, several numerical WSGD Scheme for one- and two-dimensional distributed order fractional reaction–diffusion equation.


Author(s):  
Oluwaseun Adeyeye ◽  
Ali Aldalbahi ◽  
Jawad Raza ◽  
Zurni Omar ◽  
Mostafizur Rahaman ◽  
...  

AbstractThe processes of diffusion and reaction play essential roles in numerous system dynamics. Consequently, the solutions of reaction–diffusion equations have gained much attention because of not only their occurrence in many fields of science but also the existence of important properties and information in the solutions. However, despite the wide range of numerical methods explored for approximating solutions, the adoption of block methods is yet to be investigated. Hence, this article introduces a new two-step third–fourth-derivative block method as a numerical approach to solve the reaction–diffusion equation. In order to ensure improved accuracy, the method introduces the concept of nonlinearity in the solution of the linear model through the presence of higher derivatives. The method obtained accurate solutions for the model at varying values of the dimensionless diffusion parameter and saturation parameter. Furthermore, the solutions are also in good agreement with previous solutions by existing authors.


Sign in / Sign up

Export Citation Format

Share Document