First report of Podosphaera fusca causing powdery mildew on asparagus bean in Taiwan

Author(s):  
Yi-Ting Xiao ◽  
Chao-Jen Wang ◽  
Tung-Chin Huang ◽  
Yuan-Min Shen
2012 ◽  
Vol 28 (1) ◽  
pp. 116-116 ◽  
Author(s):  
Jin-Hyeuk Kwon ◽  
Ok-Hee Choi ◽  
Hyeon-Dong Shin ◽  
Jin-Woo Kim

Plant Disease ◽  
2015 ◽  
Vol 99 (12) ◽  
pp. 1862-1862
Author(s):  
X. C. Xu ◽  
D. L. Pei ◽  
M. L. Zhao ◽  
C. W. Li

Plant Disease ◽  
2021 ◽  
pp. PDIS-07-20-1488
Author(s):  
D. L. Pei ◽  
Q. C. Zhang ◽  
Y. Y. Guo ◽  
X. Y. Wang ◽  
Z. Yu

Plant Disease ◽  
2013 ◽  
Vol 97 (7) ◽  
pp. 995-995 ◽  
Author(s):  
J. P. Ding ◽  
D. L. Pei ◽  
Q. C. Zhang ◽  
Q. C. Hong ◽  
Y. Z. Ren ◽  
...  

Herba eupatorii, one of the most important Chinese medicinal herbs, belongs to the Asteraceae family. In June 2012, a previously unknown disease, tentatively identified as powdery mildew, was observed on H. eupatorii growing in Shangqiu, in eastern Henan Province, China. Symptoms began as white mycelium partially covering upper leaf surfaces; as the disease progressed, it spread to cover entire leaf surfaces. The infected leaves became yellow and necrotic at advanced stages of infection. Specimens consisting of infected leaves were maintained at the Plant-Microbe Interaction Laboratory at Shangqiu Normal University. Microscopic observations of the morphology of the fungus revealed oval primary conidia measuring 18 to 27 × 15 to 22 μm. A long unbranched germ tube that germinated laterally from the ends of conidia was observed in some samples. Conidiophores were cylindrical, simple unbranched, and composed of a basal cell with a swollen base and three to six barrel-shaped conidia formed in chains, measuring 112 to 180 × 9 to 12 μm. Mycelial appressoria were nipple-shaped. Chasmothecia were not observed in the collected samples. To verify the identity of the fungus, the internal transcribed spacer (ITS) rDNA was amplified with ITS1 and ITS4 primers (3) and sequenced. The sequences were deposited as GenBank Accession No. JX546297. Comparison with sequences in the GenBank database revealed that the ITS sequence was 100% homologous with the sequence of Podosphaera fusca on Calendula officinalis (AB525914) (2) and Syneilesis palmata (AB040349) (1). The ITS sequence analysis verified that the causal agent was P. fusca, which is reported to be a cosmopolitan powdery mildew fungus, parasitic on numerous plant species in the Asteraceae family. Koch's postulates were completed by inoculating healthy H. eupatorii plants with a conidial suspension (prepared in distilled water) of 105 conidia/ml collected from infected plants. Five plants were sprayed until the suspension ran off the leaves, while five additional plants were sprayed with distilled water as a control. Plants were maintained in a climate cell under the following conditions: day, 24°C, 16 h; night, 20°C, 8 h; 85% humidity. After 10 days, inoculated plants developed symptoms similar to those observed in the field, whereas control plants remained healthy. Further examination showed that the inoculated plants were infected by P. fusca. To our knowledge, this is the first report of P. fusca affecting H. eupatorii in China. Because there are no fungicides labeled for use on this plant, the appearance of powdery mildew caused by P. fusca could result in substantial production loss of H. eupatorii. References: (1) T. Hirata et al. Can. J. Bot. 78:1521, 2000. (2) S. Takamatsu et al. Persoonia 24:38, 2010. (3) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications. M. A. Innis et al., eds. Academic Press, San Diego, CA, 1990.


Plant Disease ◽  
2011 ◽  
Vol 95 (4) ◽  
pp. 495-495 ◽  
Author(s):  
Y. Siddiqui ◽  
M. Sariah ◽  
H. Kausar

Cosmos caudatus Kunth. (Asteraceae), commonly known as ulam raja, is widely grown as an herbal aromatic shrub. In Malaysia, its young leaves are popularly eaten raw as salad with other greens and have been reported to possess extremely high antioxidant properties, which may be partly responsible for some of its believed medicinal functions. In early 2010, a suspected powdery mildew was observed on ulam raja plants at the Agricultural Park of Universiti Putra Malaysia. Initially, individual, white, superficial colonies were small and almost circular. Later, they enlarged and coalesced to cover the whole abaxial leaf surface. With development of the disease, all green parts (leaves, stems, and petioles) became covered with a continuous mat of mildew, giving a dusty appearance. Newly emerged leaves rapidly became infected. Diseased leaves ultimately senesced and dried up, making them aesthetically unattractive and unmarketable. The pathogen produced conidia in short chains (four to six conidia) on erect conidiophores. Conidiophores were unbranched, cylindrical, 125 to 240 μm long, with a slightly swollen foot cell. Individual conidia were hyaline, ellipsoid, and 25 to 30 (27.5) × 15 to 20 (17.5) μm with fibrosin inclusions. Morphological descriptions were consistent with those described for Sphaerotheca fuliginea or S. fusca, which has lately been reclassified as Podosphaera fusca (1). From extracted genomic DNA of P. fusca UPM UR1, the internal transcribed spacer (ITS) region was amplified with ITS1 (5′-TCCGTAGGTGAACCTGCGG-3′) and ITS4 (5′-TCCTCCGCTTATTGATATGC-3′). A BLAST search of GenBank with an ITS rDNA sequence of this fungus (GenBank Accession No. HQ589357) showed a maximum identity of 98% to the sequences of two P. fusca isolates (GenBank Accession Nos. AB525915.1 and AB525914.1). To satisfy Koch's postulates, the pathogenicity of fungal strain UPM UR1 was verified on 4-week-old plants. Inoculation was carried out by gently rubbing infected leaves onto healthy plants of C. caudatus. Ten pots of inoculated plants were kept under a plastic humid chamber and 10 pots of noninoculated plants, placed under another chamber, served as controls. After 48 h, the plants were then placed under natural conditions (25 to 28°C). Powdery mildew symptoms, similar to those on diseased field plants, appeared after 7 days on all inoculated plants. The white, superficial colonies enlarged and merged to cover large areas within 2 weeks. The infected leaf tissues became necrotic 6 to 8 days after the appearance of the first symptoms. Sporulation of P. fusca was observed on all infected leaves and stems. No symptoms were seen on the control plants. To our knowledge, this is the first report of P. fusca causing powdery mildew on C. caudatus in Malaysia. This pathogen has also been reported previously to be economically important on a number of other hosts. With ulam raja plants, more attention should be given to prevention and control measures to help manage this disease. Reference: (1) U. Braun and S. Takamatsu. Schlechtendalia 4:1, 2000.


Plant Disease ◽  
2007 ◽  
Vol 91 (9) ◽  
pp. 1203-1203 ◽  
Author(s):  
A. Garibaldi ◽  
D. Bertetti ◽  
M. L. Gullino

Coreopsis lanceolata L. (Asteraceae) is an ornamental species grown in parks and gardens and very much appreciated for its long-lasting flowering period. During the summer and fall of 2006, severe outbreaks of a previously unknown powdery mildew were observed on plants in several gardens near Biella (northern Italy). Both surfaces of leaves of the affected plants were covered with dense white mycelia and conidia. As the disease progressed, infected leaves turned yellow and died. Mycelia and conidia also were observed on stems and flower calyxes. Conidia were hyaline, ellipsoid, borne in short chains (5 to 6 conidia per chain) and measured 33 × 20 (27 to 35 × 17 to 22) μm. Conidiophores, 68 × 11 (62 to 76 × 10 to 12) μm, showed the foot cell measuring 50 × 11 (38 to 58 × 10 to 12) μm, followed by one shorter cell measuring 18 × 12 (13 to 19 × 12 to 13) μm. Fibrosin bodies were present. Chasmothecia were spherical and amber with a diameter of 99 (93 to 105) μm. Each chasmothecium contained one ascus with eight ascospores. On the basis of its morphology, the causal agent was determined to be a Podosphaera sp. (1). The ITS region (internal transcribed spacer) of rDNA was amplified using primers ITS4/ITS6 and sequenced. BLASTn analysis (1) of the 531 bp obtained showed an E-value of 0.0 with Podosphaera fusca (3). The nucleotide sequence has been assigned GenBank Accession No. EF 442023. Pathogenicity was confirmed through inoculations by gently pressing diseased leaves onto leaves of healthy C. lanceolata plants. Three plants were inoculated. Three noninoculated plants served as the control. Plants were maintained in a greenhouse at temperatures ranging from 20 to 28°C. Twelve days after inoculation, typical symptoms of powdery mildew developed on inoculated plants. Noninoculated plants did not show symptoms. The pathogenicity test was carried out twice. To our knowledge, this is the first report of powdery mildew on C. lanceolata in Italy. Species of Coreopsis were previously described as host to Erysiphe cichoracearum, Sphaerotheca macularis and Leveillula taurica and S. fusca (2,4). Voucher specimens are available at the AGROINNOVA Collection, University of Torino. References: (1) S. F. Altschul et al. Nucleic Acids Res. 25:3389, 1997. (2) U. Braun. A Monograph of the Erysiphaceae (Powdery Mildews). Cramer, Berlin, GDR, 1987. (3) U. Braun and S. Takamatsu. Schlechtendalia 4:1, 2000 (4) D. F. Farr et al. Fungi on Plants and Plant Products in the United States. The American Phytopathological Society. St Paul, MN, 1989.


2003 ◽  
Vol 4 (1) ◽  
pp. 39
Author(s):  
Dean A. Glawe ◽  
Rita Hummel ◽  
Grace Jack

Kalanchoe blossfeldiana Poelln. is a common ornamental houseplant. Although powdery mildew is a major disease of this species, there are no published reports of it in the Pacific Northwest. In August, 2002, powdery mildew was observed on six indoor K. blossfeldiana plants in an office and adjacent laboratory at the Puyallup Research and Extension Center. Accepted for publication 25 March 2003. Published 17 April 2003.


2020 ◽  
Vol 102 (3) ◽  
pp. 933-933
Author(s):  
Wéverson Lima Fonseca ◽  
José Emilson Cardoso ◽  
Cristiano Souza Lima ◽  
Francisco Marto Pinto Viana ◽  
Márcio Akio Ootani ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document