scholarly journals First report of Neopestalotiopsis clavispora causing postharvest fruit rot of loquat in Pakistan

Author(s):  
Muhammad Fahim Abbas ◽  
Sana Batool ◽  
Tamoor Khan ◽  
Muhammad Rashid
Keyword(s):  
Plant Disease ◽  
2021 ◽  
Vol 105 (1) ◽  
pp. 220
Author(s):  
S. I. Ismail ◽  
K. Ahmad Dahlan ◽  
S. Abdullah ◽  
D. Zulperi

Plant Disease ◽  
2013 ◽  
Vol 97 (12) ◽  
pp. 1657-1657 ◽  
Author(s):  
J. H. Wang ◽  
Z. H. Feng ◽  
Z. Han ◽  
S. Q. Song ◽  
S. H. Lin ◽  
...  

Pepper (Capsicum annuum L.) is an important vegetable crop worldwide. Some Fusarium species can cause pepper fruit rot, leading to significant yield losses of pepper production and, for some Fusarium species, potential risk of mycotoxin contamination. A total of 106 diseased pepper fruit samples were collected from various pepper cultivars from seven provinces (Gansu, Hainan, Heilongjiang, Hunan, Shandong, Shanghai, and Zhejiang) in China during the 2012 growing season, where pepper production occurs on approximately 25,000 ha. Pepper fruit rot symptom incidence ranged from 5 to 20% in individual fields. Symptomatic fruit tissue was surface-sterilized in 0.1% HgCl2 for 1 min, dipped in 70% ethanol for 30 s, then rinsed in sterilized distilled water three times, dried, and plated in 90 mm diameter petri dishes containing potato dextrose agar (PDA). After incubation for 5 days at 28°C in the dark, putative Fusarium colonies were purified by single-sporing. Forty-three Fusarium strains were isolated and identified to species as described previously (1,2). Morphological characteristics of one strain were identical to those of F. concentricum. Aerial mycelium was reddish-white with an average growth rate of 4.2 to 4.3 mm/day at 25°C in the dark on PDA. Pigments in the agar were formed in alternating red and orange concentric rings. Microconidia were 0- to 1-septate, mostly 0-septate, and oval, obovoid to allantoid. Macroconidia were relatively slender with no significant curvature, 3- to 5-septate, with a beaked apical cell and a foot-shaped basal cell. To confirm the species identity, the partial TEF gene sequence (646 bp) was amplified and sequenced (GenBank Accession No. KC816735). A BLASTn search with TEF gene sequences in NCBI and the Fusarium ID databases revealed 99.7 and 100% sequence identity, respectively, to known TEF sequences of F. concentricum. Thus, both morphological and molecular criteria supported identification of the strain as F. concentricum. This strain was deposited as Accession MUCL 54697 (http://bccm.belspo.be/about/mucl.php). Pathogenicity of the strain was confirmed by inoculating 10 wounded, mature pepper fruits that had been harvested 70 days after planting the cultivar Zhongjiao-5 with a conidial suspension (1 × 106 spores/ml), as described previously (3). A control treatment consisted of inoculating 10 pepper fruits of the same cultivar with sterilized distilled water. The fruit were incubated at 25°C in a moist chamber, and the experiment was repeated independently in triplicate. Initially, green to dark brown lesions were observed on the outer surface of inoculated fruit. Typical soft-rot symptoms and lesions were observed on the inner wall when the fruit were cut open 10 days post-inoculation. Some infected seeds in the fruits were grayish-black and covered by mycelium, similar to the original fruit symptoms observed at the sampling sites. The control fruit remained healthy after 10 days of incubation. The same fungus was isolated from the inoculated infected fruit using the method described above, but no fungal growth was observed from the control fruit. To our knowledge, this is the first report of F. concentricum causing a pepper fruit rot. References: (1) J. F. Leslie and B. A. Summerell. The Fusarium Laboratory Manual. Blackwell Publishing, Ames, IA, 2006. (2) K. O'Donnell et al. Proc. Nat. Acad. Sci. USA 95:2044, 1998. (3) Y. Yang et al. 2011. Int. J. Food Microbiol. 151:150, 2011.


Plant Disease ◽  
2010 ◽  
Vol 94 (5) ◽  
pp. 634-634 ◽  
Author(s):  
S. M. Williamson ◽  
T. B. Sutton

Persimmon trees are important for their fruit as well as their colorful fruit and foliage in the fall. Persimmon fruit (Japanese persimmon, Diospyros kaki cv. Fuyu) were collected in November 2008 from a tree in Windsor, NC, located in the Coastal Plain. Fruit were not symptomatic on the tree but developed dark lesions after harvest. Isolations from six fruit yielded seven isolates of Colletotrichum acutatum J. H. Simmonds. After incubation at 25°C under continuous light for 15 days on potato dextrose agar (PDA), all isolates had gray aerial mycelium, but the inverse sides of the plates of six isolates were maroon and one was beige. Masses of salmon-colored conidia were formed first in the center of the colonies, then were observed scattered across the colonies in older cultures. Conidia were hyaline, one-celled, elliptic with one or both ends pointed, and measured 8.1 to 16.3 × 3.1 to 5 μm. Setae and sclerotia were not observed. There were also dark structures measuring 1 to 10 mm that were partially embedded in the agar that contained conidia. Cultural and conidial characteristics of the isolates were similar to those of C. acutatum (3). PCR amplification was performed with the species-specific primer pair CaInt2/ITS4 (2) and genomic DNA from the original isolates and isolates obtained from inoculated fruit. An amplification product of approximately 490 bp, which is specific for C. acutatum, was observed. To fulfill Koch's postulates, persimmon fruit obtained from the grocery store were surface disinfested with 0.5% sodium hypochlorite and sterile filter paper disks dipped in conidial suspensions (1 × 105 conidia/ml) of two C. acutatum isolates (maroon and beige reverse) or sterile, deionized water were placed on the fruit. Three fruit were inoculated per treatment and the disks were placed on four locations on each fruit. Parafilm was wrapped around the diameter of the fruit to keep the filter paper disks moist and in place. Fruit were placed in moist chambers and incubated at 25°C. After 3 days, the Parafilm was removed and the fruit returned to the moist chambers. Small, dark lesions were observed on fruit inoculated with each isolate of C. acutatum when the filter paper disks were removed. Ten days after inoculation, dark lesions and acervuli with salmon-colored masses of conidia were observed on fruit inoculated with both isolates of C. acutatum and the fruit were soft. After 12 days, there were abundant masses of conidia and the inoculated areas were decayed. Control fruit remained firm and did not develop symptoms. Cultures obtained from the fruit and the conidia produced were typical of the isolates used to inoculate the fruit. C. acutatum has been reported to cause fruit rot on persimmon fruit in New Zealand (1). To our knowledge, this is the first report of C. acutatum on persimmon fruit in the United States. References: (1) R. Lardner et al. Mycol. Res. 103:275, 1999. (2) S. Sreenivasaprasad et al. Plant Pathol. 45:650, 1996. (3) B. C. Sutton. Page 523 in: Coelomycetes. Commonwealth Agricultural Bureaux, Great Britain. 1980.


Plant Disease ◽  
1999 ◽  
Vol 83 (2) ◽  
pp. 199-199 ◽  
Author(s):  
D. B. Langston ◽  
R. D. Walcott ◽  
R. D. Gitaitis ◽  
F. H. Sanders

In September 1998, a fruit rot was reported affecting pumpkin (Cucurbita pepo) in a commercial field in Terrell Co., Georgia. Symptoms on the surface of fruit occurred as round, necrotic spots or cracks a few millimeters in diameter. With age, the tissue surrounding these lesions became soft and wrinkled. A soft rot expanded into the flesh of the pumpkin, originating from the lesions observed on the surface. In time, infected pumpkins totally collapsed. V-shaped, necrotic lesions occurred at the margin of the leaf and extended inward toward the mid-rib. Samples were collected from the field and bacteria were isolated from fruit and leaf lesions onto King's medium B (1). The bacterium isolated was rod shaped, gram negative, nonflourescent, oxidase positive, Tween 80 positive, carboxymethyl cellulose positive, β-OH butyrate positive, and malonate negative. The bacterium reacted positively with polyclonal antibodies specific for the watermelon fruit blotch pathogen Acidivorax avenae subsp. citrulli and was identified as A. avenae subsp. citrulli by MIDI (Microbial Identification System, Newark, DE) according to statistical analysis of fatty acid data. Results from polymerase chain reaction (PCR) amplification of the bacterium isolated from pumpkin yielded 360-bp fragments that, when digested with the restriction enzyme HaeIII, had DNA banding patterns identical to those of stock A. avenae subsp. citrulli DNA. Koch's postulates were completed successfully with 2-week-old watermelon seedlings. This is the first report of A. avenae subsp. citrulli causing fruit rot of pumpkin in Georgia. Reference: (1) E. O. King et al. J. Lab. Clin. Med. 44:301, 1954.


Plant Disease ◽  
2019 ◽  
Vol 103 (5) ◽  
pp. 1029
Author(s):  
H. F. Liu ◽  
J. P. Yi ◽  
K. Zhang ◽  
J. Liao ◽  
L. L. A. Sein ◽  
...  

Plant Disease ◽  
2021 ◽  
Author(s):  
Xianping Zhang ◽  
Jiwen Xia ◽  
Jiakui Liu ◽  
Dan Zhao ◽  
Lingguang Kong ◽  
...  

Muskmelon (Cucumis melo L.) is one of the most widely cultivated and economically important fruit crops in the world. However, many pathogens can cause decay of muskmelons; among them, Fusarium spp. is the most important pathogen, affecting fruit yield and quality (Wang et al. 2011). In May 2017, fruit rot symptoms were observed on ripening muskmelons (cv. Jipin Zaoxue) in several fields in Liaocheng of Shandong Province, China. Symptoms appeared as brown, water-soaked lesions, irregularly circular in shape, with the lesion size ranging from a small spot (1 to 2 cm) to the decay of the entire fruit. The core and the surface of the infected fruit were covered with white to rose-reddish mycelium. Two infected muskmelons were collected from each of two fields, 10 km apart. Tissues from the inside of the infected fruit were surface disinfected with 75% ethanol for 30 s, and cultured on potato dextrose agar (PDA) at 25 °C in the dark for 5 days. Four purified cultures were obtained using the single spore method. On carnation leaf agar (CLA), macroconidia had a pronounced dorsiventral curvature, falcate, 3 to 5 septa, with tapered apical cell, and foot-shaped basal cell, measuring 19 to 36 × 4 to 6 μm. Chlamydospores were abundant, 5.5–7.5 μm wide, and 5.5–10.5 μm long, ellipsoidal or subglobose. No microconidia were observed. These morphological characteristics were consistent with the descriptions of F. pernambucanum (Santos et al. 2019). Because these isolates had similar morphology, one representative isolate was selected for multilocus phylogenetic analyses. DNA was extracted from the representative isolate using the CTAB method. The nucleotide sequences of the internal transcribed spacers (ITS) (White et al. 1990), translation elongation factor 1-α gene (TEF1), RNA polymerase II second largest subunit gene (RPB2), calmodulin (CAM) (Xia et al. 2019) were amplified using specific primers, sequenced, and deposited in GenBank (MN822926, MN856619, MN856620, and MN865126). Based on the combined dataset of ITS, TEF1, RPB2, CAM, alignments were made using MAFFT v. 7, and phylogenetic analyses were processed in MEGA v. 7.0 using the maximum likelihood method. The studied isolate (XP1) clustered together with F. pernambucanum reference strain URM 7559 (99% bootstrap). To perform pathogenicity test, 10 μl of spore suspensions (1 × 106 conidia/ml) were injected into each muskmelon fruit using a syringe, and the control fruit was inoculated with 10 μl of sterile distilled water. There were ten replicated fruits for each treatment. The test was repeated three times. After 7 days at 25 °C, the interior of the inoculated muskmelons begun to rot, and the rot lesion was expanded from the core towards the surface of the fruit, then white mycelium produced on the surface. The same fungus was re-isolated from the infected tissues and confirmed to fulfill the Koch’s postulates. No symptoms were observed on the control muskmelons. To our knowledge, this is the first report of F. pernambucanum causing of fruit rot of muskmelon in China. Considering the economic value of the muskmelon crop, correct identification can help farmers select appropriate field management measures for control of this disease.


Plant Disease ◽  
2021 ◽  
Author(s):  
Zhou Zhang ◽  
Zheng Bing Zhang ◽  
Yuan Tai Huang ◽  
FeiXiang Wang ◽  
Wei Hua Hu ◽  
...  

Peach [Prunus persica (L.) Batsch] is an important deciduous fruit tree in the family Rosaceae and is a widely grown fruit in China (Verde et al., 2013). In July and August 2018, a fruit rot disease was observed in a few peach orchards in Zhuzhou city, the Hunan Province of China. Approximately 30% of the fruit in more than 400 trees was affected. Symptoms displayed were brown necrotic spots that expanded, coalesced, and lead to fruit being rotten. Symptomatic tissues excised from the margins of lesions were surface sterilized in 70% ethanol for 10 s, 0.1% HgCl2 for 2 min, rinsed with sterile distilled water three times, and incubated on potato dextrose agar (PDA) at 26°C in the dark. Fungal colonies with similar morphology developed, and eight fungal colonies were isolated for further identification. Colonies grown on PDA were grayish-white with white aerial mycelium. After an incubation period of approximately 3 weeks, pycnidia developed and produced α-conidia and β-conidia. The α-conidia were one-celled, hyaline, fusiform, and ranged in size from 6.0 to 8.4 × 2.1 to 3.1 μm, whereas the β-conidia were filiform, hamate, and 15.0 to 27.0 × 0.8 to 1.6 μm. For molecular identification, total genomic DNA was extracted from the mycelium of a representative isolate HT-1 and the internal transcribed spacer region (ITS), β-tubulin gene (TUB), translation elongation factor 1-α gene (TEF1), calmodulin (CAL), and histone H3 gene (HIS) were amplified and sequenced (Meng et al. 2018). The ITS, TUB, TEF1, CAL and HIS sequences (GenBank accession nos. MT740484, MT749776, MT749778, MT749777, and MT749779, respectively) were obtained and in analysis by BLAST against sequences in NCBI GenBank, showed 99.37 to 100% identity with D. hongkongensis or D. lithocarpus (the synonym of D. hongkongensis) (Gao et al., 2016) (GenBank accession nos. MG832540.1 for ITS, LT601561.1 for TUB, KJ490551.1 for HIS, KY433566.1 for TEF1, and MK442962.1 for CAL). Pathogenicity tests were performed on peach fruits by inoculation of mycelial plugs and conidial suspensions. In one set, 0.5 mm diameter mycelial discs, which were obtained from an actively growing representative isolate of the fungus on PDA, were placed individually on the surface of each fruit. Sterile agar plugs were used as controls. In another set, each of the fruits was inoculated by application of 1 ml conidial suspension (105 conidia/ml) by a spray bottle. Control assays were carried out with sterile distilled water. All treatments were maintained in humid chambers at 26°C with a 12-h photoperiod. The inoculation tests were conducted twice, with each one having three fruits as replications. Six days post-inoculation, symptoms of fruit rot were observed on inoculated fruits, whereas no symptoms developed on fruits treated with agar plugs and sterile water. The fungus was re-isolated and identified to be D. hongkongensis by morphological and molecular methods, thus fulfilling Koch’s Postulates. This fungus has been reported to cause fruit rot on kiwifruit (Li et al. 2016) and is also known to cause peach tree dieback in China (Dissanayake et al. 2017). However, to our knowledge, this is the first report of D. hongkongensis causing peach fruit rot disease in China. The identification of the pathogen will provide important information for growers to manage this disease.


Plant Disease ◽  
2005 ◽  
Vol 89 (7) ◽  
pp. 773-773 ◽  
Author(s):  
M. S. González ◽  
A. Rondón

During August 2003, guava fruit (Psidium guajava L.) cv. Red Dominicana from Cojedes state in Venezuela showed circular, purple-to-brown lesions (0.5 to 1.0 cm) that spread over all surfaces and became black and shrunken on severely affected fruit. Symptomatic tissues were plated aseptically on potato dextrose agar (PDA). Colonies that were initially gray and turned black with age were consistently isolated. The fungus was characterized by dense, submerged, brown-to-black mycelium with septate hyphae. Ascocarps were perithecial, abundant, granulose, subglobose to cylindric obpyriform, solitary or aggregated, mostly unilocular with prominent long necks; ascocarp walls were stromatic, composed of several layers of cells, thick walled, and deeply pigmented on the outside. Asci were subclavate to cylindrical, stipitate, 44 to 84 × 7 to 9 μm, and eight-spored; asci walls were thick and bitunicate. Ascospores were unicellular, hyaline, guttulate, fusiform ellipsoid, widest in the mid-region with rounded ends and gelatinous plugs, and 12 to 17 × 4.5 μm. Conidiomata were pycnidial, intermixed among ascocarps, variable in shape, dark brown, solitary or aggregated, ostiolate, and with long necks up to 1 mm. Pycnidial walls were pseudoparenchymatic, multicellular, and composed of many layers of brown compressed cells. Conidiogenous cells were hyaline, subglobose to cylindrical, and smooth, and holoblastic. Conidia were hyaline, unicellular, obovate, 6 to 12 (7.5) × 5 to 8 μm, slightly truncate at the bases, rounded at apices, guttulate, and provided a gelatinous envelope and apical appendage. Appendages were hyaline, tubular, smooth, and 3.0 to 4.5 × 0.5 μm. The fungus is homothallic because single ascospores and single conidia developed ascigerous states. The ascigerous state was identified as Guignardia psidii (1) and the anamorph as Phyllosticta psidiicola (1,2). Pathogenicity tests were conducted on detached fruits inoculated with monosporic cultures. Pathogenesis and symptom development only occurred when a mixture of mycelium, ascospores, and conidia was used as inoculum. The fungus was reisolated from symptomatic fruit tissues. To our knowledge, this is the first report of Guignardia psidii, an ascigerous state of Phyllosticta psidiicola from guava fruits in Venezuela. References: (1) B. A. Ullasa and R. D. Rawal. Curr. Sci. 53:435, 1984. (2) H. A. van der Aa. Page 95 in: No. 5, Stud. Mycol., 1973.


Sign in / Sign up

Export Citation Format

Share Document