Eurypsychrophilic Pseudomonas spp. isolated from Venezuelan tropical glaciers as promoters of wheat growth and biocontrol agents of plant pathogens at low temperatures

2019 ◽  
Vol 2 (3) ◽  
pp. 265-275 ◽  
Author(s):  
Johnma J. Rondón ◽  
María M. Ball ◽  
Luz Thais Castro ◽  
Luis Andrés Yarzábal
mSphere ◽  
2021 ◽  
Author(s):  
Adrien Biessy ◽  
Amy Novinscak ◽  
Renée St-Onge ◽  
Geneviève Léger ◽  
Antoine Zboralski ◽  
...  

Plant-beneficial phenazine-producing Pseudomonas spp. are effective biocontrol agents, thanks to the broad-spectrum antibiotic activity of the phenazine antibiotics they produce. These bacteria have received considerable attention over the last 20 years, but most studies have focused only on the ability of a few genotypes to inhibit the growth of a limited number of plant pathogens.


2017 ◽  
Vol 8 ◽  
Author(s):  
Lu Meng ◽  
Yangdong Zhang ◽  
Huimin Liu ◽  
Shengguo Zhao ◽  
Jiaqi Wang ◽  
...  

2022 ◽  
Vol 10 (1) ◽  
pp. 187
Author(s):  
Antoine Zboralski ◽  
Adrien Biessy ◽  
Martin Filion

Type III secretion systems (T3SSs) are bacterial membrane-embedded nanomachines translocating effector proteins into the cytoplasm of eukaryotic cells. They have been intensively studied for their important roles in animal and plant bacterial diseases. Over the past two decades, genome sequencing has unveiled their ubiquitous distribution in many taxa of Gram-negative bacteria, including plant-beneficial ones. Here, we discuss the distribution and functions of the T3SS in two agronomically important bacterial groups: the symbiotic nodule-forming nitrogen-fixing rhizobia and the free-living plant-beneficial Pseudomonas spp. In legume-rhizobia symbiosis, T3SSs and their cognate effectors play important roles, including the modulation of the plant immune response and the initiation of the nodulation process in some cases. In plant-beneficial Pseudomonas spp., the roles of T3SSs are not fully understood, but pertain to plant immunity suppression, biocontrol against eukaryotic plant pathogens, mycorrhization facilitation, and possibly resistance against protist predation. The diversity of T3SSs in plant-beneficial bacteria points to their important roles in multifarious interkingdom interactions in the rhizosphere. We argue that the gap in research on T3SSs in plant-beneficial bacteria must be bridged to better understand bacteria/eukaryotes rhizosphere interactions and to support the development of efficient plant-growth promoting microbial inoculants.


2003 ◽  
Vol 93 (8) ◽  
pp. 966-975 ◽  
Author(s):  
Jorge T. de Souza ◽  
Christine Arnould ◽  
Chrystel Deulvot ◽  
Philippe Lemanceau ◽  
Vivienne Gianinazzi-Pearson ◽  
...  

The antibiotic 2,4-diacetylphloroglucinol (2,4-DAPG) plays an important role in the suppression of plant pathogens by several strains of Pseudomonas spp. Based on the results of this study, there is variation within and among Pythium spp. to 2,4-DAPG. Also, various propagules of Pythium ultimum var. sporangiiferum, that are part of the asexual stage of the life cycle, differ considerably in their sensitivity to 2,4-DAPG. Mycelium was the most resistant structure, followed by zoosporangia, zoospore cysts, and zoospores. Additionally, we report for the first time that pH has a significant effect on the activity of 2,4-DAPG, with a higher activity at low pH. Furthermore, the level of acetylation of phloroglucinols is also a major determinant of their activity. Transmission electron microscopy studies revealed that 2,4-DAPG causes different stages of disorganization in hyphal tips of Pythium ultimum var. sporangiiferum, including alteration (proliferation, retraction, and disruption) of the plasma membrane, vacuolization, and cell content disintegration. The implications of these results for the efficacy and consistency of biological control of plant-pathogenic Pythium spp. by 2,4-DAPG-producing Pseudomonas spp. are discussed.


2020 ◽  
Vol 8 (7) ◽  
pp. 1037 ◽  
Author(s):  
Dragana Miljaković ◽  
Jelena Marinković ◽  
Svetlana Balešević-Tubić

Bacillus spp. produce a variety of compounds involved in the biocontrol of plant pathogens and promotion of plant growth, which makes them potential candidates for most agricultural and biotechnological applications. Bacilli exhibit antagonistic activity by excreting extracellular metabolites such as antibiotics, cell wall hydrolases, and siderophores. Additionally, Bacillus spp. improve plant response to pathogen attack by triggering induced systemic resistance (ISR). Besides being the most promising biocontrol agents, Bacillus spp. promote plant growth via nitrogen fixation, phosphate solubilization, and phytohormone production. Antagonistic and plant growth-promoting strains of Bacillus spp. might be useful in formulating new preparations. Numerous studies of a wide range of plant species revealed a steady increase in the number of Bacillus spp. identified as potential biocontrol agents and plant growth promoters. Among different mechanisms of action, it remains unclear which individual or combined traits could be used as predictors in the selection of the best strains for crop productivity improvement. Due to numerous factors that influence the successful application of Bacillus spp., it is necessary to understand how different strains function in biological control and plant growth promotion, and distinctly define the factors that contribute to their more efficient use in the field.


2019 ◽  
Author(s):  
Gan Ai ◽  
Kun Yang ◽  
Yuee Tian ◽  
Wenwu Ye ◽  
Hai Zhu ◽  
...  

AbstractBeing widely existed in oomycetes, the RXLR effector features conserved RXLR-dEER motifs in its N terminal. Every known Phytophthora or Hyaloperonospora pathogen harbors hundreds of RXLRs. In Pythium species, however, none of the RXLR effectors has been characterized yet. Here, we developed a stringent method for de novo identification of RXLRs and characterized 359 putative RXLR effectors from nine tested Pythium species. Phylogenetic analysis revealed a single superfamily formed by all oomycetous RXLRs, suggesting they descent from a common ancestor. RXLR effectors from Pythium and Phytophthora species exhibited similar sequence features, protein structures and genome locations. In particular, the mosquito biological agent P. guiyangense contains a significantly larger RXLR repertoire than the other eight Pythium species examined, which may result from gene duplication and genome rearrangement events as indicated by synteny analysis. Expression pattern analysis of RXLR-encoding genes in the plant pathogen P. ultimum detected transcripts from the vast majority of predicted RXLRs with some of them being induced at infection stages. One such RXLRs showed necrosis-inducing activity. Furthermore, all predicted RXLRs were cloned from two biocontrol agents P. oligandrum and P. periplocum. Three of them were found to encode effectors inducing defense response in Nicotiana benthamiana. Taken together, our findings represent the first complete synopsis of Pythium RXLR effectors, which provides critical clues on their evolutionary patterns as well as the mechanisms of their interactions with diverse hosts.Author summaryPathogens from the Pythium genus are widespread across multiple ecological niches. Most of them are soilborne plant pathogens whereas others cause infectious diseases in mammals. Some Pythium species can be used as biocontrol agents for plant diseases or mosquito management. Despite that phylogenetically close oomycete pathogens secrete RXLR effectors to enable infection, no RXLR protein was previously characterized in any Pythium species. Here we developed a stringent method to predict Pythium RXLR effectors and compared them with known RXLRs from other species. All oomycetous RXLRs form a huge superfamily, which indicates they may share a common ancestor. Our sequence analysis results suggest that the expansion of RXLR repertoire results from gene duplication and genome recombination events. We further demonstrated that most predicted Pythium RXLRs can be transcribed and some of them encode effectors exhibiting pathogenic or defense-inducing activities. This work expands our understanding of RXLR evolution in oomycetes in general, and provides novel insights into the molecular interactions between Pythium pathogens and their diverse hosts.


Sign in / Sign up

Export Citation Format

Share Document