Practical Integrated Guidance and Control for the High-Speed Anti-Ship Missile to Counter Switching Targets Under a Short Time-to-go Condition

Author(s):  
Yunxi Zhang ◽  
Yu Fan ◽  
Mingwei Sun ◽  
Zenghui Wang ◽  
Zengqiang Chen
Author(s):  
Guanjie Hu ◽  
Jianguo Guo ◽  
Jun Zhou

An integrated guidance and control method is investigated for interceptors with impact angle constraint against a high-speed maneuvering target. Firstly, a new control-oriented model with impact angle constraint of the integrated guidance and control system is built in the pitch plane by combining the engagement kinematics and missile dynamics model between the interceptor and target. Secondly, the flight path angle of the target is estimated by extended Kalman filter in order to transform the terminal impact angle constraint into the terminal line-of-sight angle constraint. Thirdly, a nonlinear adaptive sliding mode control law of the integrated guidance and control system is designed in order to directly obtain the rudder deflection command, which eliminates time delay caused by the traditional backstepping control method. Then the Lyapunov stability theory is used to prove the stability of the whole closed-loop integrated guidance and control system. Finally, the simulation results confirm that the integrated guidance and control method proposed in this paper can effectively improve the interception performance of the interceptor to a high-speed maneuvering target.


Author(s):  
Bin Zhao ◽  
Zhenxin Feng ◽  
Jianguo Guo

The problem of the integrated guidance and control (IGC) design for strap-down missile with the field-of-view (FOV) constraint is solved by using the integral barrier Lyapunov function (iBLF) and the sliding mode control theory. Firstly, the nonlinear and uncertainty state equation with non-strict feedback form for IGC design is derived by using the strap-down decoupling strategy. Secondly, a novel adaptive finite time disturbance observer is proposed to estimate the uncertainties based on an improved adaptive gain super twisting algorithm. Thirdly, the special time-varying sliding variable is designed and the iBLF is employed to handle the problem of FOV constraint. Theoretical derivation and simulation show that the IGC system is globally uniformly ultimately bounded and the FOV angle constraint is also guaranteed not only during the reaching phase but also during the sliding mode phase.


Author(s):  
Ke-Bo Li ◽  
Wen-Shan Su ◽  
Lei Chen

The interception of high-speed target with an arbitrary maneuvering acceleration causes serious troubles to the guidance and control system design of airborne missile. A novel guidance law based on the classical differential geometry curve theory was proposed not long ago. Although it is believed and numerically demonstrated that this differential geometric guidance law (DGGL) is superior to the classical pure proportional navigation (PPN) in intercepting high-speed targets, its performance has not been thoroughly analyzed. In this paper, using the Lyapunov-like approach, the performance of DGGL against the high-speed target with an arbitrary but upper-bounded maneuvering acceleration is well studied. The upper bounds of the LOS rate and commanded acceleration of DGGL are obtained, and conditions that guarantee the capture of this type of maneuvering target are also presented. The nonlinear relative dynamics between the missile and target is taken into full account. Finally, the proposed theoretical findings are demonstrated by numerical simulation examples.


Sign in / Sign up

Export Citation Format

Share Document