scholarly journals Effects of memristive synapse radiation interactions on learning in spiking neural networks

2021 ◽  
Vol 3 (5) ◽  
Author(s):  
Sumedha Gandharava Dahl ◽  
Robert C. Ivans ◽  
Kurtis D. Cantley

AbstractThis study uses advanced modeling and simulation to explore the effects of external events such as radiation interactions on the synaptic devices in an electronic spiking neural network. Specifically, the networks are trained using the spike-timing-dependent plasticity (STDP) learning rule to recognize spatio-temporal patterns (STPs) representing 25 and 100-pixel characters. Memristive synapses based on a TiO2 non-linear drift model designed in Verilog-A are utilized, with STDP learning behavior achieved through bi-phasic pre- and post-synaptic action potentials. The models are modified to include experimentally observed state-altering and ionizing radiation effects on the device. It is found that radiation interactions tend to make the connection between afferents stronger by increasing the conductance of synapses overall, subsequently distorting the STDP learning curve. In the absence of consistent STPs, these effects accumulate over time and make the synaptic weight evolutions unstable. With STPs at lower flux intensities, the network can recover and relearn with constant training. However, higher flux can overwhelm the leaky integrate-and-fire post-synaptic neuron circuits and reduce stability of the network.

2001 ◽  
Vol 13 (10) ◽  
pp. 2221-2237 ◽  
Author(s):  
Rajesh P. N. Rao ◽  
Terrence J. Sejnowski

A spike-timing-dependent Hebbian mechanism governs the plasticity of recurrent excitatory synapses in the neocortex: synapses that are activated a few milliseconds before a postsynaptic spike are potentiated, while those that are activated a few milliseconds after are depressed. We show that such a mechanism can implement a form of temporal difference learning for prediction of input sequences. Using a biophysical model of a cortical neuron, we show that a temporal difference rule used in conjunction with dendritic backpropagating action potentials reproduces the temporally asymmetric window of Hebbian plasticity observed physiologically. Furthermore, the size and shape of the window vary with the distance of the synapse from the soma. Using a simple example, we show how a spike-timing-based temporal difference learning rule can allow a network of neocortical neurons to predict an input a few milliseconds before the input's expected arrival.


2010 ◽  
Vol 20 (06) ◽  
pp. 463-480 ◽  
Author(s):  
T. J. STRAIN ◽  
L. J. McDAID ◽  
T. M. McGINNITY ◽  
L. P. MAGUIRE ◽  
H. M. SAYERS

This paper proposes a supervised training algorithm for Spiking Neural Networks (SNNs) which modifies the Spike Timing Dependent Plasticity (STDP)learning rule to support both local and network level training with multiple synaptic connections and axonal delays. The training algorithm applies the rule to two and three layer SNNs, and is benchmarked using the Iris and Wisconsin Breast Cancer (WBC) data sets. The effectiveness of hidden layer dynamic threshold neurons is also investigated and results are presented.


2021 ◽  
Vol 15 ◽  
Author(s):  
Qian Liang ◽  
Yi Zeng

Current neural network based algorithmic composition methods are very different compared to human brain's composition process, while the biological plausibility of composition and generative models are essential for the future of Artificial Intelligence. To explore this problem, this paper presents a spiking neural network based on the inspiration from brain structures and musical information processing mechanisms at multiple scales. Unlike previous methods, our model has three novel characteristics: (1) Inspired by brain structures, multiple brain regions with different cognitive functions, including musical memory and knowledge learning, are simulated and cooperated to generate stylistic melodies. A hierarchical neural network is constructed to formulate musical knowledge. (2) Biologically plausible neural model is employed to construct the network and synaptic connections are modulated using spike-timing-dependent plasticity (STDP) learning rule. Besides, brain oscillation activities with different frequencies perform importantly during the learning and generating process. (3) Based on significant musical memory and knowledge learning, genre-based and composer-based melody composition can be achieved by different neural circuits, the experiments show that the model can compose melodies with different styles of composers or genres.


2020 ◽  
Author(s):  
Sumedha Gandharava Dahl

In this dissertation, memristor-based spiking neural networks (SNNs) are used to analyze the effect of radiation on the spatio-temporal pattern recognition (STPR) capability of the networks. Two-terminal resistive memory devices (memristors) are used as synapses to manipulate conductivity paths in the network. Spike-timing-dependent plasticity (STDP) learning behavior results in pattern learning and is achieved using biphasic shaped pre- and post-synaptic spikes. A TiO2 based non-linear drift memristor model designed in Verilog-A implements synaptic behavior and is modified to include experimentally observed effects of state-altering, ionizing, and off-state degradation radiation on the device. The impact of neuron "death" (disabled neuron circuits) due to radiation is also examined. In general, radiation interaction events distort the STDP learning curve undesirably, favoring synaptic potentiation. At lower short-term flux, the network is able to recover and relearn the pattern with consistent training, although some pixels may be affected due to stability issues. As the radiation flux and duration increases, it can overwhelm the leaky integrate-and-fire (LIF) post-synaptic neuron circuit, and the network does not learn the pattern. On the other hand, in the absence of the pattern, the radiation effects cumulate, and the system never regains stability. Neuron-death simulation results emphasize the importance of non-participating neurons during the learning process, concluding that non-participating afferents contribute to improving the learning ability of the neural network. Instantaneous neuron death proves to be more detrimental for the network compared to when the afferents die over time thus, retaining the network's pattern learning capability.


2021 ◽  
Vol 15 ◽  
Author(s):  
Guillaume Debat ◽  
Tushar Chauhan ◽  
Benoit R. Cottereau ◽  
Timothée Masquelier ◽  
Michel Paindavoine ◽  
...  

In recent years, event-based sensors have been combined with spiking neural networks (SNNs) to create a new generation of bio-inspired artificial vision systems. These systems can process spatio-temporal data in real time, and are highly energy efficient. In this study, we used a new hybrid event-based camera in conjunction with a multi-layer spiking neural network trained with a spike-timing-dependent plasticity learning rule. We showed that neurons learn from repeated and correlated spatio-temporal patterns in an unsupervised way and become selective to motion features, such as direction and speed. This motion selectivity can then be used to predict ball trajectory by adding a simple read-out layer composed of polynomial regressions, and trained in a supervised manner. Hence, we show that a SNN receiving inputs from an event-based sensor can extract relevant spatio-temporal patterns to process and predict ball trajectories.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Zuzanna Brzosko ◽  
Sara Zannone ◽  
Wolfram Schultz ◽  
Claudia Clopath ◽  
Ole Paulsen

Spike timing-dependent plasticity (STDP) is under neuromodulatory control, which is correlated with distinct behavioral states. Previously, we reported that dopamine, a reward signal, broadens the time window for synaptic potentiation and modulates the outcome of hippocampal STDP even when applied after the plasticity induction protocol (Brzosko et al., 2015). Here, we demonstrate that sequential neuromodulation of STDP by acetylcholine and dopamine offers an efficacious model of reward-based navigation. Specifically, our experimental data in mouse hippocampal slices show that acetylcholine biases STDP toward synaptic depression, whilst subsequent application of dopamine converts this depression into potentiation. Incorporating this bidirectional neuromodulation-enabled correlational synaptic learning rule into a computational model yields effective navigation toward changing reward locations, as in natural foraging behavior. Thus, temporally sequenced neuromodulation of STDP enables associations to be made between actions and outcomes and also provides a possible mechanism for aligning the time scales of cellular and behavioral learning.


2018 ◽  
Vol 311 ◽  
pp. 183-196 ◽  
Author(s):  
Banafsheh Rekabdar ◽  
Luke Fraser ◽  
Monica Nicolescu ◽  
Mircea Nicolescu

Sign in / Sign up

Export Citation Format

Share Document