scholarly journals Efficient circuit design for content-addressable memory in quantum-dot cellular automata technology

2021 ◽  
Vol 3 (10) ◽  
Author(s):  
Mohammad Enayati ◽  
Abdalhossein Rezai ◽  
Asghar Karimi

AbstractQuantum-dot cellular automata (QCA) technology is a kind of nanotechnology utilized for building computational circuits. It can be a good technology for overcome CMOS drawbacks at nano-scale due to its low delay and area. The Content-Addressable Memory (CAM) is a very fast memory that can perform search operations in a very short time. This feature makes the relative popularity of these memories and many applications for them, especially in network routing and processors. In this study, a novel loop-based circuit is designed for the QCA memory unit, which reduces area, cell count, latency, and cost. The obtained results using QCADesigner tool version 2.0.3 demonstrate that the designed QCA memory unit utilizes 16 cells, 0.01 µm2 area, and 0.25 clock cycles and has a reduction of 33% in the number of cells, 50% in area, 50% in latency, and 75% in cost compared to existing works. Then, this memory unit is utilized to design an efficient structure for CAM circuit. The results show that the developed structure for CAM circuit has 0.75 clock cycles, 32 cells, and 0.03 µm2 area, and it has a reduction of 20% in the number of cells, 25% in area, 40% in latency, and 75% in cost compared to existing works.

2016 ◽  
Vol 163 ◽  
pp. 140-150 ◽  
Author(s):  
Saeed Rasouli Heikalabad ◽  
Ahmad Habibizad Navin ◽  
Mehdi Hosseinzadeh

2015 ◽  
Vol 46 (7) ◽  
pp. 563-571 ◽  
Author(s):  
Luiz H.B. Sardinha ◽  
Douglas S. Silva ◽  
Marcos A.M. Vieira ◽  
Luiz F.M. Vieira ◽  
Omar P. Vilela Neto

2013 ◽  
Vol 467 ◽  
pp. 531-535 ◽  
Author(s):  
Kandula Suresh ◽  
Bahniman Ghosh

Quantum-dot Cellular Automata (QCA) is a very recent technology which can be used for developing new digital circuits which use very less power [1-2]. This paper mainly aims at using XOR gates to implementation of adder circuit in lesser number of cells and with a higher density.


2020 ◽  
Vol 8 (5) ◽  
pp. 3999-4003

Quantum Dot Cellular Automata (QCA) is treated as a most promising technology after CMOS techniques. The major advantages of QCA techniques are faster speed, lower energy consumption and smaller size. The implementation of clocks play very big role in the effective design of QCA circuits. In this paper, a QCA circuit is designed using the concept of QCA clocks. The proposed study describes a new method of implementing the logical function with power depletion analysis. The proposed logical function uses total number of 57 cells in which the area of each cell 372 nm2. The energy dissipation in this implementation is 18.79 meV and the total acquired area is 0.192 µm2. The proposed circuit is implemented utilizing QCA Designer. The proposal is excellent in the realization of nano-scale computing with minimal power utilization. The results are compared with the existing approaches and improvements of 6% in the area required and 7% in the number of cells are achieved


2015 ◽  
Vol 4 (5) ◽  
Author(s):  
Tamoghna Purkayastha ◽  
Tanay Chattopadhyay ◽  
Debashis De

AbstractShrinking transistor sizes and power dissipation are the major barriers in the development of future computational circuits. At least when the transistor size approaches the atomic scale, duplication of transistor density according to Moore’s law will not be possible. Physical limits, like quantum effects and nondeterministic behavior of small currents, and technological limits, such as high power consumption and design complexity, may hold back the future program of microelectronic conventional circuit scaling. Hence, an alternative technology is required for future design. Quantum dot-cellular automata (QCA) is a transistor-less, very promising nanotechnology that can be used to build nanocircuits. The conventional computer is an irreversible one; i.e. once a logic block generates the output bits, the input bits are lost. A possible solution is reversible computing, where no bit is lost during computation. Hence, logically reversible circuit can consume less energy than any conventional circuit. In this paper, a brief review on evolution of the QCA in reversible computing is discussed. Various reversible gates that are designed using QCA technology as well as the modification of those designs that are made in latter works are highlighted.


2014 ◽  
Vol 2014 (1) ◽  
pp. 37-44 ◽  
Author(s):  
Arighna Sarkar ◽  
◽  
Debarka Mukhopadhyay ◽  

Sign in / Sign up

Export Citation Format

Share Document