scholarly journals Role of Processing Temperature and Time on the Hydrothermal Alteration of K-Feldspar Rock in Autoclave

2020 ◽  
Vol 37 (4) ◽  
pp. 955-963
Author(s):  
Davide Ciceri ◽  
Marcelo de Oliveira ◽  
Dennis P. Chen ◽  
Antoine Allanore
2009 ◽  
Vol 4 (5) ◽  
pp. 1934578X0900400 ◽  
Author(s):  
Nuria Martí ◽  
Pedro Mena ◽  
Jose Antonio Cánovas ◽  
Vicente Micol ◽  
Domingo Saura

The literature on the content and stability of vitamin C (ascorbic acid, AA) in citrus juices in relation to industrial practices is reviewed. The role of vitamin C from citrus juices in human diet is also reviewed. Citrus fruits and juices are rich in several types of bioactive compounds. Their antioxidant activity and related benefits derive not only from vitamin C but also from other phytochemicals, mainly flavonoids. During juice processing, temperature and oxygen are the main factors responsible for vitamin C losses. Nonthermal processed juices retain higher levels of vitamin C, but economic factors apparently delay the use of such methods in the citrus industry. Regarding packing material, vitamin C in fruit juice is quite stable when stored in metal or glass containers, whereas juice stored in plastic bottles has a much shorter shelf-life. The limiting step for vitamin C absorption in humans is transcellular active transport across the intestinal wall where AA may be oxidized to dehydroascorbic acid (DHAA), which is easily transported across the cell membrane and immediately reduced back to AA by two major pathways. AA bioavailability in the presence of flavonoids has yielded controversial results. Whereas flavonoids seem to inhibit intestinal absorption of AA, some studies have shown that AA in citrus extract was more available than synthetic ascorbic acid alone. DHAA is reported to possess equivalent biological activity to AA, so recent studies often consider the vitamin C activity in the diet as the sum of AA plus DHAA. However, this claimed equivalence should be carefully reexamined. Humans are one of the few species lacking the enzyme (L-gulonolactone oxidase, GLO) to convert glucose to vitamin C. It has been suggested that this is due to a mutation that provided a survival advantage to early primates, since GLO produces toxic H2O2. Furthermore, the high concentration of AA (and DHAA) in neural tissues could have been the key factor that caused primates (vertebrates with relative big brain) to lose the capacity to synthesize vitamin C. Oxidative damage has many pathological implications in human health, and AA may play a central role in maintaining the metabolic antioxidant response. The abundance of citrus juices in the Mediterranean diet may provide the main dietary source for natural vitamin C.


1989 ◽  
Vol 53 (371) ◽  
pp. 315-325 ◽  
Author(s):  
J. Janeczek

AbstractNodules of manganoan fayalite occur in schlieren pegmatities in the vicinity of Strzegom, Lower Silesia. The fayalite, Na0.02(Fe1.812+Mn0.16Mg 0.03)Si0.99O4, is unzoned and non pleochroic. 2Va = 42° a 4.826(3), b 10.500(2), c 6.102(2) A, d130obs. = 2.83 Å, d130calc. = 2.833 Å, D = 4.35 g cm-3, Dcalc. = 4.353 g cm-3. The role of Na+ ions in the fayalite chemistry is discussed. The fayalite underwent multi-stage hydrothermal alteration beginning at the highest temperature (440°C) of homogenization of gaseous-fluid inclusions in quartz adjacent to the fayalite grains. Increase in fO2 and then in PH2O resulted in the formation of magnetite-quartz and Mn-grunerite-magnetite-quartz aggregates within the fayalite grains. The fayalite is mantled by a Mn-greenalite-magnetite rim, Mn-grunerite-magnetite-Mn-minnesotaite zone in a stilpnomelane or greenalite-rich groundmass. The minnesotaite is believed to have formed at the expense of grunerite. Stilpnomelane, the most abundant silicate phase in the rim, is the product of biotite and presumably greenalite alteration at the second stage of increasing Na activity (the crystallization of cleavelandite) in the pegmatites. The fayalite is also heavily altered to iddingsite—a composite mixture of amorphous FeOOH and silica. The iron-hydroxide recrystallized partially to poorly-crystalline goethite.


2015 ◽  
Vol 641 ◽  
pp. 116-119 ◽  
Author(s):  
Janusz Krawczyk ◽  
Aneta Łukaszek-Sołek ◽  
Robert Dąbrowski

This work discusses the influence of the processing temperature, time and processing strain on the microstructure of the Ti6Al2Sn4Zr6Mo alloy. The Ti6Al2Sn4Zr6Mo alloy belongs to the two-phase (α+β) type of titanium alloys. The samples were compressed with the use of the Gleeble thermo-mechanical simulator at the temperatures of: 800, 900, 950, 1000 and 1100°C and at the strain rates of: 0.01; 0.1; 1; 10 and 100 s-1 to a total true strain of 1. The occurrence of the primary α phase in the Ti6Al2Sn4Zr6Mo alloy was investigated. The diagram showing the influence of the processing temperature and the strain rate on the dynamic recrystallization of the β phase was presented.The occurrence of the primary α phase precipitates blocks the grain growth. Therefore, the plastic deformation of this alloy should be carried out at a temperature at which the separation of the primary α phase occurs to finally obtain a material with a fine grain.


Author(s):  
Vini. K ◽  
Padmakumar H. ◽  
K.M. Nissamudeen

This paper explains the role of bismuth in the luminescence enhancement of Y2O3 :Eu nanophosphors prepared by Combustion method. Bi ions serve as effective sensitizers for visible emitting rare earths for Light Emitting Diodes. From the X-ray diffraction studies, bismuth co-activated nanophosphors exhibit an early crystallization. Bismuth incorporation not only results in the luminescence enhancement at 612 nm, due to 5D0 to 7F2 transition but also reduces the processing temperature for intense photoemission.


2019 ◽  
Vol 104 (4) ◽  
pp. 536-556 ◽  
Author(s):  
Takashi Yuguchi ◽  
Kaho Shoubuzawa ◽  
Yasuhiro Ogita ◽  
Koshi Yagi ◽  
Masayuki Ishibashi ◽  
...  

2019 ◽  
Vol 21 (2) ◽  
pp. 023002 ◽  
Author(s):  
Xinmin Wang ◽  
Shuai Zhang ◽  
Huanyan Fu ◽  
Moran Gao ◽  
Zhian Ren ◽  
...  

Author(s):  
Christopher Beckwith ◽  
Tungky Subroto ◽  
Koulis Pericleous ◽  
Georgi Djambazov ◽  
Dmitry G. Eskin ◽  
...  

2020 ◽  
Author(s):  
Michael Heap ◽  
Darren Gravley ◽  
Ben Kennedy ◽  
Albert Gilg ◽  
Elisabeth Bertolett ◽  
...  

<p>Hydrothermal fluids can alter the chemical and physical properties of the materials through which they pass and can therefore modify the efficiency of fluid circulation. The role of hydrothermal alteration in the development of geothermal and epithermal mineral resources, systems that require the efficient hydrothermal circulation provided by fracture networks, is investigated here from a petrophysical standpoint using samples collected from a well exposed and variably altered palaeo-hydrothermal system hosted in the Ohakuri ignimbrite deposit in the Taupō Volcanic Zone (New Zealand). Our new laboratory data show that, although quartz and adularia precipitation reduces matrix porosity and permeability, it increases the uniaxial compressive strength, Young’s modulus, and propensity for brittle behaviour. The fractures formed in highly altered rocks containing quartz and adularia are also more planar than those formed in their less altered counterparts. All of these factors combine to enhance the likelihood that a silicified rock-mass will host permeability-enhancing fractures. Indeed, the highly altered silicified rocks of the Ohakuri ignimbrite deposit are much more fractured than less altered outcrops. By contrast, smectite alteration at the margins of the hydrothermal system does not significantly increase strength or Young’s modulus, or significantly decrease permeability, and creates a relatively unfractured rock-mass. Using our new laboratory data, we provide permeability modelling that shows that the equivalent permeability of a silicified rock-mass will be higher than that of a less altered rock-mass or a rock-mass characterised by smectite alteration, the latter of which provides a low-permeability cap required for an economically viable hydrothermal resource. Our new data show, using a petrophysical approach, how hydrothermal alteration can produce rock-masses that are both suitable for geothermal energy exploitation (high-permeability reservoir and low-permeability cap) and more likely to host high-grade epithermal mineral veins, such as gold and silver (localised fluid flow).</p>


Sign in / Sign up

Export Citation Format

Share Document