Chemical composition and fumigant toxicity of essential oils from ten aromatic plants growing in Egypt against different stages of confused flour beetle, Tribolium confusum Jacquelin du Val

Author(s):  
Hassan A. Gad ◽  
Ali F. Hamza ◽  
Samir A. M. Abdelgaleil
Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6698
Author(s):  
Arunaksharan Narayanankutty ◽  
Aswathi Moothakoottil Kuttithodi ◽  
Ahmed Alfarhan ◽  
Rajakrishnan Rajagopal ◽  
Damia Barcelo

Essential oils are biologically and environmentally safe pesticidal compounds yielded from aromatic plants. Spices are important sources of essential oils, and they are widely used in the medicine, food, and various other industries. Among the different spices, Allspice (Pimenta dioica) is underexplored in terms of its biological efficacy and a limited number of studies are available on the chemical composition of Allspice essential oil (AEO); thus, the present study evaluated the larvicidal property, the repellency, and the fumigant toxicity against common pests of stored products of AEO. AEO was found to inhibit the survival of larvae of such vectors as Aedis, Culex, and Armigeres species. Further, AEO was found to exert repellant effects against the pests of such stored products as Sitophilus, Callosobruchus, and Tribolium. Similarly, the fumigant toxicity was found to be high for AEO against these species. The contact toxicity of AEO was high against Sitophilus and Callosobruchus. Apart from that, the essential oil was found to be safe against a non-target organism (guppy fishes) and was found to be non-genotoxic in an Allium cepa model. Overall, the results of the present study indicate that the essential oil from Allspice could be used as an environmentally safe larvicidal and biopesticidal compound.


2011 ◽  
Vol 6 (8) ◽  
pp. 1934578X1100600
Author(s):  
Etienne V. Tia ◽  
Augustin A. Adima ◽  
Sébastien L. Niamké ◽  
Gnago A. Jean ◽  
Thibaud Martin ◽  
...  

Essential oils of aromatic plants with insecticidal properties are nowadays considered as alternative insecticides to protect cultures from attack by insect pest. The aims of the present work were to evaluate the toxicity of the essential oils vapors of two aromatic plants ( Lippia multiflora Mold. and Aframomum latifolium K. Schum) against Bemisia tabaci and to characterize their chemical composition. The highest fumigant toxicity against B. tabaci adults was observed with the L. multiflora oil: by exposure to 0.4 μL/L air, the lethal time inducing 90% mortality (LT90) was below 2 hours for this essential oil whereas it reached 15 h in the case of the A. latifolium oil. Both oils were analyzed by GC-FID and GC-MS on two capillary columns. The oil of L. multiflora contained a majority of oxygenated terpenoids mainly represented by the two acyclic components linalool (46.6%) and ( E)-nerolidol (16.5%); the oil of A. latifolium was dominated by hydrocarbonated terpenoids among them β-pinene (51.6%) and β-caryophyllene (12.3%) were the two major components.


Molecules ◽  
2019 ◽  
Vol 25 (1) ◽  
pp. 148 ◽  
Author(s):  
Thekla I. Anastasiou ◽  
Manolis Mandalakis ◽  
Nikos Krigas ◽  
Thomas Vézignol ◽  
Diamanto Lazari ◽  
...  

The administration of antibiotics in aquaculture has raised concern about the impact of their overuse in marine ecosystems, seafood safety and consumers’ health. This “green consumerism” has forced researchers to find new alternatives against fish pathogens. The present study focused on 12 Mediterranean medicinal-aromatic plants as potential antimicrobials and antioxidant agents that could be used in fish aquaculture. In vitro assays showed that the essential oils (EOs) from all studied plants had anti-bacterial and antioxidant properties, with their efficacy being dependent on their chemical composition. More specifically, EOs rich in carvacrol, p-cymene and γ-terpinene exhibited not only the strongest inhibitory activity against the growth of bacterial pathogens (inhibitory concentration: 26–88 μg mL−1), but also the greatest total antioxidant capacity (ABTS: 2591–5879 μmole mL−1; CUPRAC: 931–2733 μmole mL−1). These compounds were mainly found in the EOs from Greek oregano (Origanum vulgare subsp. hirtum), Spanish oregano (Thymbra capitata) and savoury (Satureja thymbra) collected from cultivations in Greece. The specific EOs stand out as promising candidates for the treatment of bacterial diseases and oxidative stress in farmed fish. Further in vivo experiments are needed to fully understand the effects of EO dietary supplementation on fish farming processes.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Masatoshi Hori ◽  
Yoshimi Aoki ◽  
Kazutaka Shinoda ◽  
Mitsuo Chiba ◽  
Rikiya Sasaki

Sign in / Sign up

Export Citation Format

Share Document