Influence of Nitrogen Fertilization Pattern on Productivity, Nitrogen Use Efficiencies, and Profitability in Different Rice Production Systems

Author(s):  
Muhammad Ishfaq ◽  
Nadeem Akbar ◽  
Usman Zulfiqar ◽  
Nauman Ali ◽  
Khawar Jabran ◽  
...  
2017 ◽  
Vol 20 (1) ◽  
pp. 67-75
Author(s):  
JA Adjetey ◽  
QS Mulbah

In lowland rice production systems, flooding patterns vary during the cropping period and this poses a serious challenge to productivity due to the effect of flooding on the availability and uptake of nitrogen. The aim of this study was to examine the influence of various flooding patterns on nitrogen use in rice grown under simulated wetland conditions. Rice was grown in a greenhouse at 0, 110 and 220 kg N ha-1 under well watered control conditions, continuous flooding, early flooding at tillering, and late flooding post-tillering. The results showed that continuous and early flooding increased tiller production and grain yield compared to late flooding or non-flooded conditions. Although the highest grain yields under the different flooding patterns were obtained with 220 kg N ha-1, the combination of 110 kg N ha-1 and early flooding also significantly increased tiller productivity, nitrogen recovery, and agronomic nitrogen use efficiency (NUE). There is the need to regulate the supply of nitrogen and water resources if grain yield and NUE has to be increased at minimal costs. Also, compared to well-watered conditions, rice production under flooded conditions lead to increased productivity and N rate must match realistic target yields. Best results are obtained when flooding occurs in the early rather than later parts of the season.Bangladesh Agron. J. 2017, 20(1): 67-75


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1291
Author(s):  
Nasr M. Abdou ◽  
Mohamed A. Abdel-Razek ◽  
Shimaa A. Abd El-Mageed ◽  
Wael M. Semida ◽  
Ahmed A. A. Leilah ◽  
...  

Sustainability of rice production under flooding conditions has been challenged by water shortage and food demand. Applying higher nitrogen fertilization could be a practical solution to alleviate the deleterious effects of water stress on lowland rice (Oryza sativa L.) in semi-arid conditions. For this purpose, field experiments were conducted during the summer of 2017 and 2018 seasons. These trials were conducted as split-split based on randomized complete blocks design with soil moisture regimes at three levels (120, 100 and 80% of crop evapotranspiration (ETc), nitrogen fertilizers at two levels (N1—165 and N2—200 kg N ha−1) and three lowland Egyptian rice varieties [V1 (Giza178), V2 (Giza177) and V3 (Sakha104)] using three replications. For all varieties, growth (plant height, tillers No, effective tillers no), water status ((relative water content RWC, and membrane stability index, MSI), physiological responses (chlorophyll fluorescence, Relative chlorophyll content (SPAD), and yield were significantly increased with higher addition of nitrogen fertilizer under all water regimes. Variety V1 produced the highest grain yield compared to other varieties and the increases were 38% and 15% compared with V2 and V3, respectively. Increasing nitrogen up to 200 kg N ha−1 (N2) resulted in an increase in grain and straw yields by 12.7 and 18.2%, respectively, compared with N1. The highest irrigation water productivity (IWP) was recorded under I2 (0.89 kg m−3) compared to (0.83 kg m−3) and (0.82 kg m−3) for I1 and I3, respectively. Therefore, the new applied agro-management practice (deficit irrigation and higher nitrogen fertilizer) effectively saved irrigation water input by 50–60% when compared with the traditional cultivation method (flooding system). Hence, the new proposed innovative method for rice cultivation could be a promising strategy for enhancing the sustainability of rice production under water shortage conditions.


2013 ◽  
Vol 134 ◽  
pp. 72-82 ◽  
Author(s):  
M. Devkota ◽  
C. Martius ◽  
J.P.A. Lamers ◽  
K.D. Sayre ◽  
K.P. Devkota ◽  
...  

2014 ◽  
Vol 164 ◽  
pp. 74-81 ◽  
Author(s):  
Meiju Liu ◽  
Weiling Liang ◽  
Hang Qu ◽  
Gengyin Zhi ◽  
Qiuxue Chen ◽  
...  

10.5772/13568 ◽  
2011 ◽  
Author(s):  
Victor Galhano ◽  
Laranjo Gomes ◽  
Fernndez-valientec Eduardo ◽  
Romeu Videira ◽  
Francisco Peixoto

2021 ◽  
Vol 25 (1) ◽  
pp. 1-22
Author(s):  
MP Ali ◽  
B Nessa ◽  
MT Khatun ◽  
MU Salam ◽  
MS Kabir

The damage caused by insect pest is the continual factor for the reduction of rice production. To date, 232 rice insect pest species are identified in Bangladesh and more than 100 species of insects are considered pests in rice production systems globally, but only about 20 - 33 species can cause significant economic loss. The major goal of this study is to explore all the possible ways of developed and proposed technologies for rice insect pests management and minimize economic losses. Insect pests cause 20% average yield loss in Asia where more than 90% of the world's rice is produced. In Bangladesh, outbreak of several insects such as rice hispa, leafroller, gallmidge, stem borers and brown planthopper (BPH) occurs as severe forms. Based on previous reports, yield loss can reach upto 62% in an outbreak situation due to hispa infestation. However, BPH can cause 44% yield loss in severe infestested field. To overcome the outbreaks in odd years and to keep the loss upto 5%, it is necessary to take some preventive measures such as planting of resistant or tolerant variety, stop insecticide spraying at early establishment of rice, establish early warning and forecasting system, avoid cultivation of susceptible variety and following crop rotation. Subsequent quick management options such as insecticidal treatment for specific insect pest should also be broadcasted through variety of information systems. Advanced genomic tool can be used to develop genetically modified insect and plants for sustainable pest management. In addition, to stipulate farmers not use insecticides at early crop stgae and minimize general annualized loss, some interventions including training rice farmers, regular field monitoring, digitalization in correct insect pests identification and their management (example; BRRI rice doctor mobile app), and demonstration in farmers field. Each technology itself solely or combination of two or more or all the packages can combat the insect pests, save natural enemies, harvest expected yield and contribute to safe food production in Bangladesh. Bangladesh Rice J. 25 (1) : 1-22, 2021


Sign in / Sign up

Export Citation Format

Share Document