scholarly journals High Nitrogen Fertilization Modulates Morpho-Physiological Responses, Yield, and Water Productivity of Lowland Rice under Deficit Irrigation

Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1291
Author(s):  
Nasr M. Abdou ◽  
Mohamed A. Abdel-Razek ◽  
Shimaa A. Abd El-Mageed ◽  
Wael M. Semida ◽  
Ahmed A. A. Leilah ◽  
...  

Sustainability of rice production under flooding conditions has been challenged by water shortage and food demand. Applying higher nitrogen fertilization could be a practical solution to alleviate the deleterious effects of water stress on lowland rice (Oryza sativa L.) in semi-arid conditions. For this purpose, field experiments were conducted during the summer of 2017 and 2018 seasons. These trials were conducted as split-split based on randomized complete blocks design with soil moisture regimes at three levels (120, 100 and 80% of crop evapotranspiration (ETc), nitrogen fertilizers at two levels (N1—165 and N2—200 kg N ha−1) and three lowland Egyptian rice varieties [V1 (Giza178), V2 (Giza177) and V3 (Sakha104)] using three replications. For all varieties, growth (plant height, tillers No, effective tillers no), water status ((relative water content RWC, and membrane stability index, MSI), physiological responses (chlorophyll fluorescence, Relative chlorophyll content (SPAD), and yield were significantly increased with higher addition of nitrogen fertilizer under all water regimes. Variety V1 produced the highest grain yield compared to other varieties and the increases were 38% and 15% compared with V2 and V3, respectively. Increasing nitrogen up to 200 kg N ha−1 (N2) resulted in an increase in grain and straw yields by 12.7 and 18.2%, respectively, compared with N1. The highest irrigation water productivity (IWP) was recorded under I2 (0.89 kg m−3) compared to (0.83 kg m−3) and (0.82 kg m−3) for I1 and I3, respectively. Therefore, the new applied agro-management practice (deficit irrigation and higher nitrogen fertilizer) effectively saved irrigation water input by 50–60% when compared with the traditional cultivation method (flooding system). Hence, the new proposed innovative method for rice cultivation could be a promising strategy for enhancing the sustainability of rice production under water shortage conditions.

Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1629
Author(s):  
Primitiva Mboyerwa ◽  
Kibebew Kibret ◽  
Peter Mtakwa ◽  
Abebe Aschalew

Rice production in Tanzania, with 67% of its territory considered semi-dry and having average annual rainfall of 300 mm, must be increased to feed an ever-growing population. Water for irrigation and low soil fertility are among the main challenges. One way to decrease water consumption in paddy fields is to change the irrigation regime for rice production, replacing continuous flooding with alternate wetting and drying. In order to assess the impact of different irrigation regimes and nitrogen fertilizer applications on growth, yield, and water productivity of rice, a greenhouse pot experiment with soil from lowland rice ecology was conducted at Sokoine University of Agriculture, Tanzania during the 2019 cropping season. The experiment was split-plot based on randomized complete block design with 12 treatments and 3 replications. Water regimes were the main factors comparing continuous flooding (CF) and alternate wetting and drying (AWD) with nitrogen fertilizer levels as the subfactor, comparing absolute control (no fertilizer) with 0 (P and K fertilizers), 60, 90, 120, and 150 kg Nha−1. Alternate wetting and drying (AWD) significantly improved water productivity by 8.3% over CF (p < 0.05). Water productivity (WP) ranged from 0.6 to 1.5 kg of rice per m3 of water. Average water use ranged from 36 to 82 L per season, and water saving was up to 34.3%. Alternate wetting and drying significantly improved yields (p < 0.05) by 13.3%, and the yield ranged from 21.8 to 118.2 g pot−1. The combination of AWD water management and 60 kg N ha−1 nitrogen fertilization application was found to be the optimal management, however there was no significant difference between 60 and 90 kg N ha−1, in which case 60 kg N ha−1 is recommended because it lowers costs and raises net income. Nitrogen levels significantly affected water productivity, water use, and number of irrigations. Nitrogen levels had significant effect (p < 0.05) on plant height, number of tillers, flag leaf area, chlorophyll content, total tillers, number of productive tillers, panicle weight, panicle length, 1000-grain weight, straw yield, grain yield, and grain harvest index. The results showed that less water can be used to produce more crops under alternative wetting and drying irrigation practices. The results are important for water-scarce areas, providing useful information to policy makers, farmers, agricultural departments, and water management boards in devising future climate-smart adaptation and mitigation strategies.


2013 ◽  
Vol 67 (1) ◽  
pp. 232-238 ◽  
Author(s):  
Mojtaba Khoshravesh ◽  
Behrouz Mostafazadeh-Fard ◽  
Manouchehr Heidarpour ◽  
Ali-Reza Kiani

On a global scale, irrigated agriculture consumes about 72% of available freshwater resources. Deficit irrigation can be applied in the field to save irrigation water and still lead to acceptable crop production. The AquaCrop model is a simulation model for management of irrigation and nitrogen fertilizer. This model is a new model that is accurate, robust and requires fewer data inputs compared with the other models. The purpose of this study was to simulate canopy cover, grain yield and water use efficiency (WUE) for soybean using the AquaCrop model. A field line source sprinkler irrigation system was conducted under full and deficit irrigation using different nitrogen fertilizer applications during two cropping seasons for soybean at Gorgan province in Iran. The simulation results showed a reasonably accurate prediction of yield, canopy cover and WUE in all cases (error less than 23%). The simulated pattern of canopy progression over time was close to measured values, with Willmott's index of agreement for all the cases being ≥0.95 for different parameters. The AquaCrop model has the ability to simulate the WUE of soybean under different irrigation water and nitrogen applications. This model is a useful tool for managing the crop water productivity.


Agriculture ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 448
Author(s):  
Leontina Lipan ◽  
Aarón A. Carbonell-Pedro ◽  
Belén Cárceles Rodríguez ◽  
Víctor Hugo Durán-Zuazo ◽  
Dionisio Franco Tarifa ◽  
...  

Mango is one of the most cultivated tropical fruits worldwide and one of few drought-tolerant plants. Thus, in this study the effect of a sustained deficit irrigation (SDI) strategy on mango yield and quality was assessed with the aim of reducing irrigation water in mango crop. A randomized block design with four treatments was developed: (i) full irrigation (FI), assuring the crop’s water needs, and three levels of SDI receiving 75%, 50%, and 33% of irrigation water (SDI75, SDI50, and SDI33). Yield, morphology, color, titratable acidity (TA), total soluble solids (TSS), organic acids (OA), sugars, minerals, fiber, antioxidant activity (AA), and total phenolic content (TPC) were analyzed. The yield was reduced in SDI conditions (8%, 11%, and 20% for SDI75, SDI50, and SDI33, respectively), but the irrigation water productivity was higher in all SDI regimes. SDI significantly reduced the mango size, with SDI33 generating the smallest mangoes. Peel color significantly changed after 13 days of ripening, with SDI75 being the least ripe. The TA, AA, and citric acid were higher in SDI75, while the TPC and fiber increased in all SDI levels. Consequently, SDI reduced the mango size but increased the functionality of samples, without a severe detrimental effect on the yield.


2018 ◽  
Vol 64 (No. 8) ◽  
pp. 361-366 ◽  
Author(s):  
Liang Yueping ◽  
Gao Yang ◽  
Wang Guangshuai ◽  
Si Zhuanyun ◽  
Shen Xiaojun ◽  
...  

Reducing crop luxury transpiration is an important step in improving water productivity; water shortage regions are potential hotspots for studying physiological water conservation. This study investigated the amount of luxury transpiration in winter wheat and its responses to different irrigation treatments in North China Plain. The results showed that luxury transpiration existed and increased with growth of winter wheat and after rainfall. In each sampling day, the amount of luxury transpiration under full irrigation was significantly higher than that under deficit irrigation. The average amount of luxury transpiration was 258.87 g/m<sup>2</sup> under full irrigation, and 125.18 g/m<sup>2</sup> under deficit irrigation during the experimental period. Although the amount of luxury transpiration was 2.09-fold higher under full irrigation than that in deficit irrigation, the water loss ratio due to luxury transpiration in deficit irrigation (8.13%) was significantly higher than that in full irrigation (6.75%). Furthermore, the ratio between luxury transpiration amount and crop daily transpiration was revealed in all sampling dates. Therefore, deficit irrigation should be generalized in the water shortage area, because it can save irrigation water and reduce the amount of luxury transpiration. Full irrigation should be carried out in the water abundant region mainly for higher production.


2020 ◽  
Vol 63 (6) ◽  
pp. 1813-1825
Author(s):  
Thomas J. Trout ◽  
Terry A. Howell ◽  
Marshall J. English ◽  
Derrel L. Martin

HighlightsDeficit irrigation may maximize net income when irrigation water supplies are limited or expensive.Water production functions are used with economic parameters to maximize net income with deficit irrigation.Net income may be insensitive to the amount of deficit irrigation if production costs are appropriate for anticipated yield.Deficit irrigation increases risk.Abstract. Competition for, regulation of, and depletion of water supplies in the western U.S. has resulted in reduced water available for irrigating crops. When the water supply is expensive or inadequate to meet full crop water requirements, deficit irrigation (DI) may maximize net income (NI) by reducing use of expensive water or irrigating more land with limited irrigation supplies. Managed DI entails rational planning and strategic water allocation to maximize NI when water supplies are constrained. Biophysical and economic relationships were used to develop NI models for DI and determine water allocation strategies that maximize NI under three types of water supply constraints. The analyses determined that potential benefits of DI are greatest when water is expensive, irrigation efficiency is low, the water supply is flexible, and rainfed production is not economically viable. When production costs are appropriate for anticipated yields, NI is less sensitive to DI planning decisions. Deficit irrigation will become more important as irrigation water supplies continue to decline in the future. Net income analysis can assist growers in making rational DI decisions. Keywords: Deficit irrigation, Economic analysis, Irrigation management, Net income, Optimization, Water productivity.


Agromet ◽  
2009 ◽  
Vol 23 (2) ◽  
pp. 123
Author(s):  
Didiek Setiobudi ◽  
Hasil Sembiring

The water saving technology for lowland rice cultivation was very crucial because of in the future irrigation water become scarce and competed with other sectors. The lowering of the availability of irrigation water had the impact for sustainability of rice production. The review of the paper described the pattern of basic water requirement, yield responses of several lowland rice varieties to moisture stress, days interval irrigation and the alternatives of water saving techniques for improving yield and water productivity. The pattern of the actual water requirement (ET+P&S) showed the maximum value of 8.8 mm/day (1.02 lt/sec/ha) for high yielding varieties (HYV) that occurred from heading to 50% flowering. Under limited water supply, irrigation water should be applied that period to prevent yield loss. Soil moisture stress at moderate level (- 0.5 bar) from heading to full flowering was significantly decreased yield about 30% when compared with the yield of continuously flooded 3 cm depth. This period was a critical period of HYV to soil moisture stress. For rotational irrigation purposes, information of the optimum days interval irrigation was important. It was found that 3 days irrigation interval was a critical limit for HYV to achieve higher yield. The SRI model of rice cultivation had the lowest rice yield in the lowland soil, poor drainage, clay soil texture and low permeability. The modified irrigation of the SRI plus fertilizer N based on LCC readings gave a greater yield as well as water productivity. The hybrid and NPT line rice varieties had higher yield components and grain yield than Ciherang variety. Ciherang variety was not favor to grown for the wet season, it was more productive when grown in dry season even with AWD irrigation model. The plant spacing of 25 cm x 25 cm gave higher number of panicle/hill and number of spikelet/panicle under both AWD and continuously flooded 3 cm depth for dry and wet season consistently. The fertilizer N management based on SSNM with low and high rates for the early vegetative stage were not significantly affected all yield components and grain yield. The AWD irrigation could save irrigation water about 18% when compared to the continuously flooded conditions.The grain yield of the hybrid, inbred and NPT line rice varieties was higher for the dry season than wet season under both AWD irrigation and continuous flooding consistently.


2016 ◽  
Vol 8 (3) ◽  
pp. 112 ◽  
Author(s):  
David K. Rop ◽  
Emmanuel C. Kipkorir ◽  
John K. Taragon

<p>The broad objective of this study was to test Deficit Irrigation (DI) as an appropriate irrigation management strategy to improve crop water productivity and give optimum onion crop yield. A field trial was conducted with drip irrigation system of six irrigation treatments replicated three times in a randomized complete block design. The crop was subjected to six water stress levels 100% ETc (T100), 90% ETc (T90), 80% ETc (T80), 70% ETc (T70), 60% ETc (T60) and 50% ETc (T50) at vegetative and late season growth stages. The onion yield and quality based on physical characteristics and irrigation water use efficiency were determined. The results indicated that the variation in yield ranged from 34.4 ton/ha to 18.9 ton/ha and the bulb size ranged from 64 mm to 35 mm in diameter for T100 and T50 respectively. Irrigation water use efficiency values decreased with increasing water application level with the highest of 16.2 kg/ha/mm at T50, and the lowest being13.1 kg/ha/mm at T100. It was concluded that DI at vegetative and late growth stages influence yields in a positive linear trend with increasing quantity of irrigation water and decreasing water stress reaching optimum yield of 32.0 ton/ha at 20% water stress (T80) thereby saving 10.7% irrigation water. Onion bulb production at this level optimizes water productivity without significantly affecting yields. DI influenced the size and size distribution of fresh onion bulbs, with low size variation of the fresh bulbs at T80.</p>


Sign in / Sign up

Export Citation Format

Share Document