New achievement in moisture sensitivity of nano-silica modified asphalt mixture with a combined effect of bitumen type and traffic condition

Author(s):  
S. M. Mirabdolazimi ◽  
A. H. Kargari ◽  
M. Mazhari Pakenari
2019 ◽  
Vol 9 (7) ◽  
pp. 1315 ◽  
Author(s):  
Solomon Sackey ◽  
Dong-Eun Lee ◽  
Byung-Soo Kim

To combat the rutting effect and other distresses in asphalt concrete pavement, certain modifiers and additives have been developed to modify the asphalt mixture to improve its performance. Although few additives exist, nanomaterials have recently attracted significant attention from the pavement industry. Several experimental studies have shown that the use of nanomaterials to modify asphalt binder results in an improved oxidative aging property, increased resistance to the rutting effect, and improves the rheological properties of the asphalt mixture. However, despite the numerous benefits of using nanomaterials in asphalt binders and materials, there are various uncertainties regarding the environmental impacts of nano-modified asphalt mixtures (NMAM). Therefore, this study assessed a Nano-Silica-Modified Asphalt Mixtures in terms of materials production emissions through the Life Cycle Assessment methodology (LCA), and the results were compared to a conventional asphalt mixture to understand the impact contribution of nano-silica in asphalt mixtures. To be able to compare the relative significance of each impact category, the normalized score for each impact category was calculated using the impact scores and the normalization factors. The results showed that NMAM had a global warming potential of 7.44563 × 103 kg CO2-Eq per functional unit (FU) compared to 7.41900 × 103 kg CO2-Eq per functional unit of the conventional asphalt mixture. The application of LCA to NMAM has the potential to guide decision-makers on the selection of pavement modification additives to realize the benefits of using nanomaterials in pavements while avoiding potential environmental risks.


2019 ◽  
Vol 205 ◽  
pp. 137-147 ◽  
Author(s):  
Qian Chen ◽  
Chaohui Wang ◽  
Penghui Wen ◽  
Xiaolong Sun ◽  
Tengteng Guo

2019 ◽  
Vol 81 (6) ◽  
Author(s):  
Norfazira Mohd Azahar ◽  
Norhidayah Abdul Hassan ◽  
Ramadhansyah Putra Jaya ◽  
Hasanan Md. Nor ◽  
Mohd Khairul Idham Mohd Satar ◽  
...  

The use of cup lump rubber as an additive in asphalt binder has recently become the main interest of the paving industry. The innovation helps to increase the natural rubber consumption and stabilize the rubber price. This study evaluates the mechanical performance of cup lump rubber modified asphalt (CMA) mixture in terms of resilient modulus, dynamic creep and indirect tensile strength under aging conditions. The CMA mixture was prepared using dense-graded Marshall-designed mix and the observed behavior was compared with that of conventional mixture. From the results, both mixtures passed the volumetric properties as accordance to Malaysian Public Work Department (PWD) specification. The addition of cup lump rubber provides better resistance against permanent deformation through the enhanced properties of resilient modulus and dynamic creep. Furthermore, the resilient modulus of CMA mixture performed better under aging conditions.  


Author(s):  
Audrey R. Copeland ◽  
Jack Youtcheff ◽  
Aroon Shenoy

2011 ◽  
Vol 105-107 ◽  
pp. 810-817 ◽  
Author(s):  
Rong Hui Zhang ◽  
Jia Liu ◽  
Jian Chao Huang ◽  
Yi Fu

To solve the high-temperature rutting problem of asphalt pavement, the old rubber of the tire rubber and plastic of general polyethylene waste composite modified asphalt mixture is proposed. The plastic and rubber compound particle was made by the rubber through efficient desulfurization additives, pre-swelling, twin-screw extrusion equipment. The particles mixed with the asphalt mixtures specimen preparation and the dynamic stability experiments, composite beam fatigue experiments, flexural tensile strength and modulus experiments and anti-reflective pavement cracks and other mechanical experiments are performed. The comparative data obtained by the rubber and plastic composited modified asphalt mixtures and SBS asphalt mixtures prove that the rubber and plastic composited modified asphalt mixtures have excellent rutting resistance and fatigue resistance.


Sign in / Sign up

Export Citation Format

Share Document