Rubber Modified Asphalt Mixture Properties and Mechanical Testing

2011 ◽  
Vol 105-107 ◽  
pp. 810-817 ◽  
Author(s):  
Rong Hui Zhang ◽  
Jia Liu ◽  
Jian Chao Huang ◽  
Yi Fu

To solve the high-temperature rutting problem of asphalt pavement, the old rubber of the tire rubber and plastic of general polyethylene waste composite modified asphalt mixture is proposed. The plastic and rubber compound particle was made by the rubber through efficient desulfurization additives, pre-swelling, twin-screw extrusion equipment. The particles mixed with the asphalt mixtures specimen preparation and the dynamic stability experiments, composite beam fatigue experiments, flexural tensile strength and modulus experiments and anti-reflective pavement cracks and other mechanical experiments are performed. The comparative data obtained by the rubber and plastic composited modified asphalt mixtures and SBS asphalt mixtures prove that the rubber and plastic composited modified asphalt mixtures have excellent rutting resistance and fatigue resistance.

2011 ◽  
Vol 243-249 ◽  
pp. 4112-4118
Author(s):  
Min Jiang Zhang ◽  
Gang Chen ◽  
Li Xia Hou ◽  
Li Ping Zhang

Based on the viscoelasticity theory and the data of creep test, Burgers model was established, which was used to study the viscoelastic property of SBR asphalt mixtures, and the viscoelastic constitutive relation was obtained. Using the finite element method, the temperature stresses field was calculated under the environmental conditions and the thermal stresses of SBR modified asphalt pavement was given at the last part of this paper. The study indicated that SBR modified asphalt mixtures have the advantage over common asphalt mixture in low-temperature performance.


2015 ◽  
Vol 10 (2) ◽  
pp. 61-68 ◽  
Author(s):  
Marián Dubravský ◽  
Ján Mandula

Abstract In recent years, warm mix asphalt (WMA) is becoming more and more used in the asphalt industry. WMA provide a whole range of benefits, whether economic, environmental and ecological. Lower energy consumption and less pollution is the most advantages of this asphalt mixture. The paper deals with the addition of natural zeolite into the sub base asphalt layers, which is the essential constituent in the construction of the road. Measurement is focused on basic physic – mechanical properties declared according to the catalog data sheets. The aim of this article is to demonstrate the ability of addition the natural zeolite into the all asphalt layers of asphalt pavement. All asphalt mixtures were compared with reference asphalt mixture, which was prepared in reference temperature.


2013 ◽  
Vol 438-439 ◽  
pp. 391-394 ◽  
Author(s):  
Yuan Zhao Chen ◽  
Zhen Xia Li

According to high temperature weak stability of common asphalt mixture, rutting tests of diatomite modified asphalt mixture, modified lake asphalt mixture, modified rock asphalt mixture and common asphalt mixture are carried out. Changes of dynamic stability for common asphalt mixture compared with modified asphalt mixtures are comparatively analysed. The results show that compared with common asphalt mixture, rutting resistances of diatomite modified asphalt mixture, modified lake asphalt mixture and modified rock asphalt mixture are greatly improved. It is proposed that those kinds of modified asphalt mixture are adopted in asphalt pavement of large longitudinal slope section.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6589
Author(s):  
Ahmed Khater ◽  
Dong Luo ◽  
Moustafa Abdelsalam ◽  
Jianxun Ma ◽  
Mohamed Ghazy

Lignin and glass fiber were used as additives to improve the quality of road pavements and minimize moisture damage and cracking at low temperatures on asphalt pavement, according to a previous laboratory study. The aim of this paper is to make a significant contribution to the environmental assessment of the construction of road pavements using four types of asphalt mixtures based on the life cycle assessment (LCA) methodology according to the requirements of ISO 14040, considering the impact of raw material extraction, asphalt mixture manufacturing, transportation, and wearing surface construction. The results of the environmental assessment showed that all studied asphalt mixtures do not offer any improvement in all impact categories, and three modified asphalt mixtures have a slight negative effect in all impact categories. The composite mixture has the highest negative effect of the studied three modified asphalt mixtures in all categories except in the marine aquatic ecotoxicity potential category and freshwater aquatic ecotoxicity potential category, where the lignin modified asphalt mixture has the highest negative effect in these two categories but has the best environmental impacts on most of other impact categories. Furthermore, the negative effect caused by composite asphalt mixtures is minimal and thus can be used to improve the overall performance of asphalt pavement.


2019 ◽  
Vol 9 (5) ◽  
pp. 870 ◽  
Author(s):  
Limin Li ◽  
Zhaoyi He ◽  
Weidong Liu ◽  
Cheng Hu

To solve the early rutting failure of asphalt pavement, the application of rock asphalt from Sichuan, China, based on anti-rutting performance, was studied. Preparations of North Sichuan rock asphalt (NS RA) and NS RA-modified asphalt mixture were elaborated in detail. Using Zhonghai AH-70 asphalt, Esso AH-70 asphalt, North American rock asphalt (NA RA) and NS RA, the performances of NS RA modified asphalt were researched based on index tests, Brookfield rotary viscosity test and bending beam rheometer test. A performance verification of NS RA-modified asphalt was carried out using rutting calculation, the rutting, indirect tensile fatigue, freeze–thaw split and small beam bending tests based on five kinds of selected gradations. The results indicated that in comparison with NA RA, the NS RA has a good modification effect as well. The NS RA can obviously improve the anti-rutting ability of the asphalt binder, and it can enhance its anti-aging performance as well. For the NS RA-modified asphalt mixture, it is feasible to determine the optimum NS RA content, based on its anti-rutting performance, and its optimum NS RA content is about 8%. The dynamic stability values of NS RA-modified asphalt mixtures are at least 3-fold higher than those of the base asphalt mixtures, and they are all far greater than the summer hot area requirement (no less than 2800 times/mm). NS RA-modified asphalt mixtures used in the middle course of asphalt pavement can obviously improve the anti-rutting performance of the pavement, and to enhance the anti-rutting ability of pavements, it should be used in the middle course of the pavement. The fatigue life values of NS RA-modified asphalt mixtures are at least 14.5-fold higher than those of the base asphalt mixtures. The freeze–thaw splitting strength ratio values of NS RA-modified asphalt mixtures are improved by at least 9.5% over the base asphalt mixtures, and their freeze–thaw splitting strength ratio values are all greater than the requirement (no less than 75%). In comparison with the base asphalt, the low temperature performances of NS RA-modified asphalt and its mixtures slightly decline, but they can meet the requirements for the zones with a minimum temperature of no less than –21.5 °C too. Therefore, except for the extremely low temperature area, it is an effective method for solving the rutting problem of pavement for using NS RA-modified asphalt.


2011 ◽  
Vol 239-242 ◽  
pp. 2919-2925 ◽  
Author(s):  
Min Jiang Zhang ◽  
Xing Hua Jiao ◽  
Wen Bo Zhang ◽  
Li Ping Zhang

Asphalt mixture is a kind of typical elastic-viscoplastic material. Environment temperature and loading condition will greatly affect its performance. As the temperature falls, asphalt pavement will engender a shrinkage deformation under the action of temperature stress. When the accumulated temperature stress exceeds tensile strength, the asphalt pavement will be cracked. Based on the results of the bending creep test in low temperature, the Burgers model was established and the viscoelastic parameters in the model were given, and the relaxation modulus of asphalt mixture was also determined in this paper. The study indicated that SBR modified asphalt mixtures have the advantage over common asphalt mixture in low-temperature performance.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2128
Author(s):  
Paulo F. Teixeira ◽  
José A. Covas ◽  
Loïc Hilliou

The dispersion mechanisms in a clay-based polymer nanocomposite (CPNC) during twin-screw extrusion are studied by in-situ rheo-optical techniques, which relate the CPNC morphology with its viscosity. This methodology avoids the problems associated with post extrusion structural rearrangement. The polydimethylsiloxane (PDMS) matrix, which can be processed at ambient and low temperatures, is used to bypass any issues associated with thermal degradation. Local heating in the first part of the extruder allows testing of the usefulness of low matrix viscosity to enhance polymer intercalation before applying larger stresses for clay dispersion. The comparison of clay particle sizes measured in line with models for the kinetics of particle dispersion indicates that larger screw speeds promote the break-up of clay particles, whereas smaller screw speeds favor the erosion of the clay tactoids. Thus, different levels of clay dispersion are generated, which do not simply relate to a progressively better PDMS intercalation and higher clay exfoliation as screw speed is increased. Reducing the PDMS viscosity in the first mixing zone of the screw facilitates dispersion at lower screw speeds, but a complex interplay between stresses and residence times at larger screw speeds is observed. More importantly, the results underline that the use of larger stresses is inefficient per se in dispersing clay if sufficient time is not given for PDMS to intercalate the clay galleries and thus facilitate tactoid disruption or erosion.


Sign in / Sign up

Export Citation Format

Share Document