scholarly journals The Time-Dependent Vehicle Routing Problem with Time Windows and Road-Network Information

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Hamza Ben Ticha ◽  
Nabil Absi ◽  
Dominique Feillet ◽  
Alain Quilliot ◽  
Tom Van Woensel
2014 ◽  
Vol 505-506 ◽  
pp. 1071-1075
Author(s):  
Yi Sun ◽  
Yue Chen ◽  
Chang Chun Pan ◽  
Gen Ke Yang

This paper presents a real road network case based on the time dependent vehicle routing problem with time windows (TDVRPTW), which involves optimally routing a fleet of vehicles with fixed capacity when traffic conditions are time dependent and services at customers are only available in their own time tables. A hybrid algorithm based on the Genetic Algorithm (GA) and the Multi Ant Colony System (MACS) is introduced in order to find optimal solutions that minimize two hierarchical objectives: the number of tours and the total travel cost. The test results show that the integrated algorithm outperforms both of its traditional ones in terms of the convergence speed towards optimal solutions.


Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2082
Author(s):  
Dengkai Hou ◽  
Houming Fan ◽  
Xiaoxue Ren

This paper studies the multi-depot joint distribution vehicle routing problem considering energy consumption with time-dependent networks (MDJDVRP-TDN). Aiming at the multi-depot joint distribution vehicle routing problem where the vehicle travel time depends on the variation characteristics of the road network speed in the distribution area, considering the influence of the road network on the vehicle speed and the relationship between vehicle load and fuel consumption, a multi-depot joint distribution vehicle routing optimization model is established to minimize the sum of vehicle fixed cost, fuel consumption cost and time window penalty cost. Traditional vehicle routing problems are modeled based on symmetric graphs. In this paper, considering the influence of time-dependent networks on routes optimization, modeling is based on asymmetric graphs, which increases the complexity of the problem. A hybrid genetic algorithm with variable neighborhood search (HGAVNS) is designed to solve the model, in which the nearest neighbor insertion method and Logistic mapping equation are used to generate the initial solution firstly, and then five neighborhood structures are designed to improve the algorithm. An adaptive neighborhood search times strategy is used to balance the diversification and depth search of the population. The effectiveness of the designed algorithm is verified through several groups of numerical instances with different scales. The research can enrich the relevant theoretical research of multi-depot vehicle routing problems and provide the theoretical basis for transportation enterprises to formulate reasonable distribution schemes.


2021 ◽  
Vol 11 (22) ◽  
pp. 10579
Author(s):  
Daqing Wu ◽  
Chenxiang Wu

The time-dependent vehicle routing problem of time windows of fresh agricultural products distribution have been studied by considering both economic cost and environmental cost. A calculation method for road travel time across time periods is designed in this study. A freshness measure function of agricultural products and a measure function of carbon emission rate are employed by considering time-varying vehicle speeds, fuel consumptions, carbon emissions, perishable agricultural products, customers’ time windows, and minimum freshness. A time-dependent green vehicle routing problem with soft time windows (TDGVRPSTW) model is formulated. The object of the TDGVRPSTW model is to minimize the sum of economic cost and environmental cost. According to the characteristics of the model, a new variable neighborhood adaptive genetic algorithm is designed, which integrates the global search ability of the genetic algorithm and the local search ability of the variable neighborhood descent algorithm. Finally, the experimental data show that the proposed approaches effectively avoid traffic congestions, reduce total distribution costs, and promote energy conservation and emission reduction.


2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Li Wang ◽  
Shuai Gao ◽  
Kai Wang ◽  
Tong Li ◽  
Lin Li ◽  
...  

With energy and environmental issues becoming increasingly prominent, electric vehicles (EVs) have become the important transportation means in the logistics distribution. In the real-world urban road network, there often exist multiple paths between any two locations (depot, customer, and charging station) since the time-dependent travel times. That is, the travel speed of an EV on each path may be different during different time periods, and thus, this paper explicitly considers path selection between two locations in the time-dependent electric vehicle routing problem with time windows, denoted as path flexibility. Therefore, the integrated decision-making should include not only the routing plan but also the path selection, and the interested problem of this paper is a time-dependent electric vehicle routing problem with time windows and path flexibility (TDEVRP-PF). In order to determine the optimal path between any two locations, an optimization model is established with the goal of minimizing the distance and the battery energy consumption associated with travel speed and cargo load. On the basis of the optimal path model, a 0-1 mixed-integer programming model is then formulated to minimize the total travel distance. Hereinafter, an improved version of the variable neighborhood search (VNS) algorithm is utilized to solve the proposed models, in which multithreading technique is adopted to improve the solution efficiency significantly. Ultimately, several numerical experiments are carried out to test the performance of VNS with a view to the conclusion that the improved VNS is effective in finding high-quality distribution schemes consisted of the distribution routes, traveling paths, and charging plans, which are of practical significance to select and arrange EVs for logistics enterprises.


Sign in / Sign up

Export Citation Format

Share Document