Start-up of a membrane bio-electrochemical reactor: technology for wastewater treatment and energy generation

Author(s):  
Rodrigo Almeria Ragio ◽  
Priscila Sanches Rodrigues ◽  
Eduardo Lucas Subtil
Chemosphere ◽  
2019 ◽  
Vol 218 ◽  
pp. 696-704 ◽  
Author(s):  
Dezhao Liu ◽  
Changwei Li ◽  
Hengbo Guo ◽  
Xianwang Kong ◽  
Lihua Lan ◽  
...  

2013 ◽  
Vol 8 (2) ◽  
pp. 234-243 ◽  
Author(s):  
Abdolreza Khalili ◽  
Mohammad Reza Mohebi ◽  
Mohammad Mohebi ◽  
Farideh Ashouri

Starting up a wastewater treatment plant (WWTP) is one of the most important stages of operation. A new method was used to start Arak activated sludge WWTP up, which took in advantages of the other methods. Primarily just one of the basins was in the lane and wastewater entered the plant part by part. At first 1/30, second week 1/15, third week 1/6, and fourth week 1/3 of total inflow came to the plant. Observing little progress of biomass gain, some sludge from a similar treatment plant was added to the system, as seed. This procedure continued so the MLSS of the system, attained the 1/3 total design MLSS which was design MLSS of one basin. In the next two weeks, by using developed sludge of the self-system the second and third basins came in the lane and inflow increased to 2/3 and total flow, respectively. Finally after two months of beginning the start-up and one month after adding the seed total desired biomass was developed and the plant started to waste sludge. Because of cold weather start-up period took a longer time than expected. But even before developing biomass environment friendly results were achieved. After attaining design MLSS, BOD5 and COD removal from 40% and 60% increased to 90% and TSS removal from 70% reached to 96%. Less loading, less foam forming, no bacteriologic and chemical problems, better process control, using less seed, saving costs in sludge transport and avoiding relevant problems were the main advantages of this method.


2016 ◽  
Vol 11 (1) ◽  
pp. 47-55
Author(s):  
Nadeem Khalil ◽  
Tarique Ahmad

Amongst the technologies available, the up flow anaerobic sludge blanket (UASB) process has been one of the most widely applied methods for municipal waste water treatment especially in countries of warm climatic conditions like India. However, past about one decade has witnessed rapid decline in the UASB popularity and its implementation. There has been criticism from various sections on the performance of UASB reactors for not complying with the prescribed discharge standards. It is a general hypothesis that the UASB reactors are not meant for diluted waste water like municipal sewage when typically the BOD is less than 150 mg/l, COD 250 mg/l and sulphates are more than 150mg/l. An attempt has been made through this study to investigate the reasons on the basis of quality assessment and field observations on UASB reactors and it’s post-treatment of a newly commissioned (start-up) municipal (sewage) wastewater treatment plant commonly called ‘STP’ having capacity of 14 million litres per day (MLD). Study was aimed to know the gaps during the commissioning stage which could be related to poor removal efficiencies. This paper briefly discusses some issues related to operation and maintenance of the UASB plants with purpose for improvements.


2021 ◽  
pp. 117795
Author(s):  
Shahjalal Khandaker ◽  
Sudipto Das ◽  
Md. Tofazzal Hossain ◽  
Aminul Islam ◽  
Mohammad Raza Miah ◽  
...  

Author(s):  
В.А. Кондрашев ◽  
С.Г. Метелица

Рассмотрены вопросы, связанные с проведением пусконаладочных работ биоблока станции очистки хозяйственно-бытовых и близких к ним по составу сточных вод при пробном пуске в эксплуатацию очистных сооружений. Подробно рассмотрены этапы пусконаладочных работ биоблока очистных сооружений с «затравкой» активным илом из действующих биологических очистных сооружений и с дозировкой легкоокисляемой органики. Описан состав оборудования станции КОС-9 производства «Гермес Групп». Рассмотрены все этапы пусконаладочных работ биоблока на примере запуска очистных сооружений КОС-9 с привлечением многочисленных опытных данных. Определены периоды этапов пусконаладки биоблока. Приведены проблемы наладки биоблока и пути их решения с достижением требуемого результата. Технология, используемая на станции, обеспечивает очистку сточных вод, соответствующую требованиям, предъявляемым к выпуску очищенных стоков в водоем рыбохозяйственного значения. Issues related to commissioning a biological treatment plant at the facilities for household and similar in composition wastewater treatment during the trial start of the treatment facilities are considered. The stages of commissioning a biological treatment plant at the wastewater treatment facilities with «inoculating» activated sludge from the operating biological treatment facilities and with dosing easily oxidable organic matter are considered in detail. The equipment configuration of the WWTP-9 produced by Germes Group is described. All stages of the biological treatment plant commissioning are considered through the example of the start-up of WWTP-9 with the use of numerous experimental data. The periods of biological treatment plant commissioning stages have been determined. The problems of adjusting the biological treatment plant and the ways of their elimination to achieve the required result are presented. The technology used at the WWT facilities provides for the effluent quality that meets the requirements for the discharge into a water body of commercial fishing importance.


2021 ◽  
Author(s):  
Juan Arévalo ◽  
Juan Manuel Ortiz ◽  
Eduard Borràs-Camps ◽  
Victor Monsalvo-Garcia ◽  
Maria D. Kennedy ◽  
...  

The world's largest demonstrator of a revolutionary energy system in desalination for drinking water production is in operation. MIDES uses Microbial Desalination Cells (MDC) in a pre-treatment step for reverse osmosis (RO), for simultaneous saline stream desalination and wastewater treatment. MDCs are based on bio-electro-chemical technology, in which biological wastewater treatment can be coupled to the desalination of a saline stream using ion exchange membranes without external energy input. MDCs simultaneously treat wastewater and perform desalination using the energy contained in the wastewater. In fact, an MDC can produce around 1.8 kWh of bioelectricity from the energy contained in 1 m3 of wastewater. Compared to traditional RO, more than 3 kWh/m3 of electrical energy is saved. With this novel technology, two low-quality water streams (saline stream, wastewater) are transformed into two high-quality streams (desalinated water, treated wastewater) suitable for further uses. An exhaustive scaling-up process was carried out in which all MIDES partners worked together on nanostructured electrodes, antifouling membranes, electrochemical reactor design and optimization, life cycle assessment, microbial electrochemistry and physiology expertise, and process engineering and control. The roadmap of the lab-MDC upscaling goes through the assembly of a pre-pilot MDC, towards the development of the demonstrator of the MDC technology (patented). Nominal desalination rate between 4-11 Lm-2h-1 is reached with a current efficiency of 40 %. After the scalability success, two MDC pilot plants were designed and constructed consisting of one stack of 15 MDC pilot units with a 0.4 m2 electrode area per unit. This book presents the information generated throughout the EU funded MIDES project and includes the latest developments related to desalination of sea water and brackish water by applying microbial desalination cells. ISBN: 9781789062113 (Paperback) ISBN: 9781789062120 (eBook)


Sign in / Sign up

Export Citation Format

Share Document