Investigation on self-healing of neat and polymer modified asphalt binders

2020 ◽  
Vol 20 (2) ◽  
Author(s):  
C. Wang ◽  
L. Xue ◽  
W. Xie ◽  
W. Cao
Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2434
Author(s):  
Laura Moretti ◽  
Nico Fabrizi ◽  
Nicola Fiore ◽  
Antonio D’Andrea

In recent years, nanotechnology has sparked an interest in nanomodification of bituminous materials to increase the viscosity of asphalt binders and improves the rutting and fatigue resistance of asphalt mixtures. This paper presents the experimental results of laboratory tests on bituminous mixtures laid on a 1052 m-long test section built in Rome, Italy. Four asphalt mixtures for wearing and binder layer were considered: two polymer modified asphalt concretes (the former modified with the additive Superplast and the latter modified with styrene–butadiene–styrene), a “hard” graphene nanoplatelets (GNPs) modified asphalt concrete and a not-modified mixture. The indirect tensile strength, water sensitivity, stiffness modulus, and fatigue resistance of the mixtures were tested and compared. A statistical analysis based on the results has shown that the mixtures with GNPs have higher mechanical performances than the others: GNP could significantly improve the tested mechanical performances; further studies will be carried out to investigate its effect on rutting and skid resistance.


Author(s):  
Mingjun Hu ◽  
Daquan Sun ◽  
Tong Lu ◽  
Jianmin Ma ◽  
Fan Yu

Water damage often occurs on porous asphalt pavement during service life because of the well-developed pore structure. Determining the adhesion and adhesion healing properties of high-viscosity modified asphalt (HVMA) under water condition is beneficial to understand the water damage process of porous asphalt. In this study, the modified binder bond strength test was first conducted to investigate the adhesion property and self-healing behavior of HVMA at different conditions. Then, the surface energy test was carried out to further characterize the differences in adhesion property of HVMA. Moreover, the gel permeation chromatography test and fluorescence microscopic test were used to investigate the influence of chemical composition and polymer morphology on the adhesion property of HVMA. Results show that the presence of water reduces the adhesion property of HVMA. The addition of polymers leads to an increasing adhesion strength and a decreasing self-healing ability of HVMA. The self-healing ability of HVMA improves with the increase of temperature, but also shows a decreased trend when the healing time is long at high-temperature water immersion. The effect of polymers on the adhesion property of asphalt has two aspects. First, the swelling of polymers leads to an increasing content of polar heavy components in HVMA, thus enhancing polarity adsorption between asphalt and aggregate. Moreover, a polymer-centered interfacial diffusion layer can be formed during the adsorption of light components, which increases the overlapping area of structural asphalt between adjacent aggregates. This can also improve the adhesion property at the asphalt–aggregate interface.


2018 ◽  
Vol 21 (6) ◽  
pp. 686-702 ◽  
Author(s):  
Jhony Habbouche ◽  
Elie Y. Hajj ◽  
Peter E. Sebaaly ◽  
Murugaiyah Piratheepan

2010 ◽  
Vol 37 (1) ◽  
pp. 17-24 ◽  
Author(s):  
Hakseo Kim ◽  
Soon-Jae Lee ◽  
Serji N. Amirkhanian

This study presents an experimental evaluation for the performance properties of polymer modified asphalt (PMA) binders containing warm mix asphalt (WMA) additives. The PMA binders with the additives were produced using two of the available warm asphalt processes (i.e., Aspha-min and Sasobit) and three PMA binders graded as performance grade (PG) 76-22. The warm PMA binders were artificially short-term and then long-term aged using the rolling thin film oven (RTFO) and pressure aging vessel (PAV) procedures. Superpave binder tests were carried out on the binders through the rotational viscometer (RV), the dynamic shear rheometer (DSR), and the bending beam rheometer (BBR). In general, the results of this research indicated that (1) the addition of the WMA additives into the PMA binders showed positive effects on increasing rutting resistance at high temperature (based on the high failure temperature values from the DSR test); (2) the PMA binders containing the additives were observed to be less resistant to fatigue cracking at intermediate temperatures compared to the control PMA binders (based on the G*sin δ values at 25 °C from the DSR test); and (3) the addition of wax additive represented a possible lower resistance on low temperature cracking (based on the stiffness and the m-value at –12 °C from the BBR test).


Sign in / Sign up

Export Citation Format

Share Document