scholarly journals Fast and versatile polarization control of X-ray by segmented cross undulator at SPring-8

2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Jun Miyawaki ◽  
Susumu Yamamoto ◽  
Yasuyuki Hirata ◽  
Masafumi Horio ◽  
Yoshihisa Harada ◽  
...  

AbstractAn X-ray is the well-known probe to examine structure of materials, including our own bodies. The X-ray beam, especially at the wavelength of nanometers, has also become significant to directly investigate electronic states of a sample. Such an X-ray is called a soft X-ray and polarization dependence of the light-matter interaction further unveils the microscopic properties, such as orbitals or spins of electrons. Generation of high brilliant beams of the polarized X-ray has linked to development of our experimental science, and it has been made by radiation from relativistic electrons at the synchrotron radiation facilities over the world. Recently, we constructed a new polarization-controlled X-ray source, the segmented cross undulator, at SPring-8, the largest synchrotron radiation facility in the world. The operation is based on interference of X-ray beams, which is sharply contrast to the conventional method of regulating electron trajectory by the mechanical control of magnets. The paradigm shift opened the measurement innovations and allowed us to design new experimental approaches to capture signals that have been hidden in materials. The present review describes the novel X-ray source with the principle of operation and the technical details of optimization. Examples of the frontier spectroscopies that use unique optical properties of the source are introduced, followed by the future prospects for next generation synchrotron radiation facilities.

1988 ◽  
Vol 32 ◽  
pp. 1-7
Author(s):  
John V. Gilfrich

The physical principles giving rise to synchrotron radiation(SR), the facilities necessary to make use of this source of radiation and the way in which it can be used for x-ray diffraction experiments have been described in other parts of this proceedings. The use of synchrotron radiation as an excitation source for x-ray fluorescence takes advantage of many of its unique properties to provide the potential for an improved analytical capability, beyond that which can be realized with more conventional laboratory x-ray sources. Workers around the world are studying this application (as well as a wide variety of others) , to establish the potential of this technique. Table 1 lists some of the facilities where significant XRF effort is being expended. This list is not intended to be complete, but just to convey some idea of the magnitude of the research which is being carried out.


2007 ◽  
Vol 22 (23) ◽  
pp. 4280-4309 ◽  
Author(s):  
S. B. DABAGOV ◽  
M. FERRARIO ◽  
L. PALUMBO ◽  
L. SERAFINI

Frascati's National Laboratories (LNF INFN) are well known in the world for pioneering research in the particle interaction and synchrotron radiation physics fields. Good experience in designing accelerators, storage rings and beamlines for synchrotron radiation allows presently LNF to be in the frontier for the construction of new X-ray generation sources. This report is an introduction to new research activity "Coherent Scattering Phenomena for Radiations in Solids" started in Frascati within the approved projects SPARC, SPARX and PLASMON-X. The main purpose of the project is to develop research area for studying the channeling phenomena of charged and neutral particles in periodic solid structures.


2018 ◽  
Vol 25 (2) ◽  
pp. 378-384
Author(s):  
Matthew Hand ◽  
Hongchang Wang ◽  
Francesco Maccherozzi ◽  
Marco Apollonio ◽  
Jingtao Zhu ◽  
...  

Insertion devices are utilized at synchrotron radiation facilities around the world for their capability to provide a high-brilliance X-ray beam. APPLE-II type undulators are especially important for their capacity to switch between a variety of photon beam polarization states. A high-precision soft X-ray polarimeter has been used to investigate the polarization calibration of an APPLE-II undulator (period length λu= 64 mm) installed on beamline I06 at Diamond Light Source. Systematic measurement of the beam polarization state at a range of linear arbitrary angles has been compared with the expected result for a given set of undulator gap and row phase parameters calculated from theory. Determination of the corresponding Stokes–Poincaré parameters from the measured data reveals a discrepancy between the two. The limited number of energy/polarization combinations included in the undulator calibration tables necessitates the use of interpolated values for the missing points which is expected to contribute to the discrepancy. However, by modifying the orbit of the electron beam through the undulator by at least 160 µm it has been found that for certain linear polarizations the discrepancies can be corrected. Overall, it is suggested that complete correction of the Stokes–Poincaré parameters for all linear angles would require alteration of both these aspects.


2008 ◽  
Vol 26 (3) ◽  
pp. 489-495 ◽  
Author(s):  
E.G. Bessonov ◽  
M.V. Gorbunkov ◽  
B.S. Ishkhanov ◽  
P.V. Kostryukov ◽  
Yu.Ya. Maslova ◽  
...  

AbstractThe possibility of the creation and the application prospects of the laser-electron X-ray generator based on Thomson scattering of laser radiation on a bunch of relativistic electrons are considered. Such a generator fills the existing gap between X-ray tubes and synchrotron radiation sources, which is several orders of magnitude in terms of the brightness, average intensity, size, and also in the construction and running costs.


2013 ◽  
Vol 9 (S304) ◽  
pp. 266-269
Author(s):  
Andrzej Niedźwiecki ◽  
Fu-Guo Xie ◽  
Agnieszka Stȩpnik

AbstractRadiatively inefficient, hot accretion flows are widely considered as a relevant accretion mode in low-luminosity AGNs. We study spectral formation in such flows using a refined model with a fully general relativistic description of both the radiative (leptonic and hadronic) and hydrodynamic processes, as well as with an exact treatment of global Comptonization. We find that the X-ray spectral index–Eddington ratio anticorrelation as well as the cut-off energy measured in the best-studied objects favor accretion flows with rather strong magnetic field and with a weak direct heating of electrons. Furthermore, they require a much stronger source of seed photons than considered in previous studies. The nonthermal synchrotron radiation of relativistic electrons seems to be the most likely process capable of providing a sufficient flux of seed photons. Hadronic processes, which should occur due to basic properties of hot flows, provide an attractive explanation for the origin of such electrons.


Author(s):  
B. Jouffrey ◽  
D. Dorignac ◽  
A. Bourret

Since the early works on GP zones and the model independently proposed by Preston and Guinier on the first steps of precipitation in supersaturated solid solution of aluminium containing a few percent of copper, many works have been performed to understand the structure of different stages in the sequence of precipitation.The scheme which is generally admitted can be drawn from a work by Phillips.In their original model Guinier and Preston analysed a GP zone as composed of a single (100) copperrich plane surrounded by aluminum atomic planes with a slightly shorter distance from the original plane than in the solid solution.From X-ray measurements it has also been shown that GP1 zones were not only copper monolayer zones. They could be up to a few atomic planes thick. Different models were proposed by Guinier, Gerold, Toman. Using synchrotron radiation, proposals have been recently made.


1987 ◽  
Vol 48 (C1) ◽  
pp. C1-175-C1-181
Author(s):  
S. AHMAD ◽  
M. OHTOMO ◽  
R. W. WHITWORTH

1987 ◽  
Vol 48 (C9) ◽  
pp. C9-91-C9-94
Author(s):  
M. GRIONI ◽  
F. SCHAEFERS ◽  
J. B. GOEDKOOP ◽  
J. C. FUGGLE ◽  
J. L. WOOD ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document