scholarly journals Quantitative investigation of linear arbitrary polarization in an APPLE-II undulator

2018 ◽  
Vol 25 (2) ◽  
pp. 378-384
Author(s):  
Matthew Hand ◽  
Hongchang Wang ◽  
Francesco Maccherozzi ◽  
Marco Apollonio ◽  
Jingtao Zhu ◽  
...  

Insertion devices are utilized at synchrotron radiation facilities around the world for their capability to provide a high-brilliance X-ray beam. APPLE-II type undulators are especially important for their capacity to switch between a variety of photon beam polarization states. A high-precision soft X-ray polarimeter has been used to investigate the polarization calibration of an APPLE-II undulator (period length λu= 64 mm) installed on beamline I06 at Diamond Light Source. Systematic measurement of the beam polarization state at a range of linear arbitrary angles has been compared with the expected result for a given set of undulator gap and row phase parameters calculated from theory. Determination of the corresponding Stokes–Poincaré parameters from the measured data reveals a discrepancy between the two. The limited number of energy/polarization combinations included in the undulator calibration tables necessitates the use of interpolated values for the missing points which is expected to contribute to the discrepancy. However, by modifying the orbit of the electron beam through the undulator by at least 160 µm it has been found that for certain linear polarizations the discrepancies can be corrected. Overall, it is suggested that complete correction of the Stokes–Poincaré parameters for all linear angles would require alteration of both these aspects.

Author(s):  
A. N. Artemiev ◽  
A. A. Snigirev ◽  
V. N. Korchuganov ◽  
A. G. Valentinov ◽  
V. V. Kvardakov ◽  
...  

Author(s):  
V. Ramakrishnan

The remarkable advances in structural biology in the past three decades have led to the determination of increasingly complex structures that lie at the heart of many important biological processes. Many of these advances have been made possible by the use of X-ray crystallography using synchrotron radiation. In this short article, some of the challenges and prospects that lie ahead will be summarized.


1990 ◽  
Vol 68 (6) ◽  
pp. 2719-2722 ◽  
Author(s):  
A. Matsumuro ◽  
M. Kobayashi ◽  
T. Kikegawa ◽  
M. Senoo

2003 ◽  
Vol 321 (2-3) ◽  
pp. 221-232 ◽  
Author(s):  
A Yilmazbayhan ◽  
O Delaire ◽  
A.T Motta ◽  
R.C Birtcher ◽  
J.M Maser ◽  
...  

1991 ◽  
Vol 24 (6) ◽  
pp. 982-986 ◽  
Author(s):  
T. Ishikawa ◽  
K. Hirano ◽  
S. Kikuta

A new method for complete determination of polarization state in the hard X-ray region is described. The system consists of a perfect-crystal phase retarder and a linear polarization analyzer. This method gives not only the amplitude ratio of mutually perpendicular electric vector components and the phase shift between them but also the proportion of unpolarized radiation.


2009 ◽  
Vol 16 (2) ◽  
pp. 143-151 ◽  
Author(s):  
Robin L. Owen ◽  
James M. Holton ◽  
Clemens Schulze-Briese ◽  
Elspeth F. Garman

Accurate measurement of photon flux from an X-ray source, a parameter required to calculate the dose absorbed by the sample, is not yet routinely available at macromolecular crystallography beamlines. The development of a model for determining the photon flux incident on pin diodes is described here, and has been tested on the macromolecular crystallography beamlines at both the Swiss Light Source, Villigen, Switzerland, and the Advanced Light Source, Berkeley, USA, at energies between 4 and 18 keV. These experiments have shown that a simple model based on energy deposition in silicon is sufficient for determining the flux incident on high-quality silicon pin diodes. The derivation and validation of this model is presented, and a web-based tool for the use of the macromolecular crystallography and wider synchrotron community is introduced.


2017 ◽  
Vol 73 (8) ◽  
pp. 702-709 ◽  
Author(s):  
Hisashi Naitow ◽  
Yoshinori Matsuura ◽  
Kensuke Tono ◽  
Yasumasa Joti ◽  
Takashi Kameshima ◽  
...  

Serial femtosecond crystallography (SFX) with an X-ray free-electron laser is used for the structural determination of proteins from a large number of microcrystals at room temperature. To examine the feasibility of pharmaceutical applications of SFX, a ligand-soaking experiment using thermolysin microcrystals has been performed using SFX. The results were compared with those from a conventional experiment with synchrotron radiation (SR) at 100 K. A protein–ligand complex structure was successfully obtained from an SFX experiment using microcrystals soaked with a small-molecule ligand; both oil-based and water-based crystal carriers gave essentially the same results. In a comparison of the SFX and SR structures, clear differences were observed in the unit-cell parameters, in the alternate conformation of side chains, in the degree of water coordination and in the ligand-binding mode.


2003 ◽  
Vol 799 ◽  
Author(s):  
Rolf Köhler ◽  
Daniil Grigoriev ◽  
Michael Hanke ◽  
Martin Schmidbauer ◽  
Peter Schäfer ◽  
...  

ABSTRACTMulti-fold stacks of In0.6Ga0.4As quantum dots embedded into a GaAs matrix were investigated by means of x-ray diffuse scattering. The measurements were done with synchrotron radiation using different diffraction geometries. Data evaluation was based on comparison with simulated distributions of x-ray diffuse scattering. For the samples under consideration ((001) surface) there is no difference in dot extension along [110] and [-110] and no directional ordering. The measurements easily allow the determination of the average indium amount in the wetting layers. Data evaluation by simulation of x-ray diffuse scattering gives an increase of Incontent from the dot bottom to the dot top.


Sign in / Sign up

Export Citation Format

Share Document