scholarly journals Artificial Electric Field Algorithm with Greedy State Transition Strategy for Spherical Multiple Traveling Salesmen Problem

Author(s):  
Jian Bi ◽  
Guo Zhou ◽  
Yongquan Zhou ◽  
Qifang Luo ◽  
Wu Deng

AbstractThe multiple traveling salesman problem (MTSP) is an extension of the traveling salesman problem (TSP). It is found that the MTSP problem on a three-dimensional sphere has more research value. In a spherical space, each city is located on the surface of the Earth. To solve this problem, an integer-serialized coding and decoding scheme was adopted, and artificial electric field algorithm (AEFA) was mixed with greedy strategy and state transition strategy, and an artificial electric field algorithm based on greedy state transition strategy (GSTAEFA) was proposed. Greedy state transition strategy provides state transition interference for AEFA, increases the diversity of population, and effectively improves the accuracy of the algorithm. Finally, we test the performance of GSTAEFA by optimizing examples with different numbers of cities. Experimental results show that GSTAEFA has better performance in solving SMTSP problems than other swarm intelligence algorithms.

2020 ◽  
Vol 11 (3) ◽  
pp. 79-91
Author(s):  
Azcarie Manuel Cabrera Cuevas ◽  
Jania Astrid Saucedo Martínez ◽  
José Antonio Marmolejo Saucedo

The variation of the traveling salesman problem (TSP) with multiple salesmen (m-TSP) has been studied for many years resulting in diverse solution methods, both exact and heuristic. However, the high difficulty level on finding optimal (or acceptable) solutions has opposed the many efforts of doing so. The proposed method regards a two stage procedure which implies a modified version of the p-Median Problem (PMP) alongside the TSP, making a partition of the nodes into subsets that will be assigned to each salesman, solving it with Branch & Cut (B&C), in the first stage. This is followed by the routing, applying an Ant Colony Optimization (ACO) metaheuristic algorithm to solve a TSP for each subset of nodes. A case study was reviewed, detailing the positioning of five vehicles in strategic places in the Mexican Republic.


Author(s):  
Belal Al-Khateeb ◽  
Mohammed Yousif

Multiple Traveling Salesman Problem (MTSP) is one of various real-life applications, MTSP is the extension of the Traveling Salesman Problem (TSP). TSP focuses on searching of minimum or shortest path (traveling distance) to visit all cities by salesman, while the primary goal of MTSP is to find shortest path for m paths by n salesmen with minimized total cost. Wherever, total cost means the sum of distances of all salesmen. In this work, we proposed metaheuristic algorithm is called Meerkat Swarm Optimization (MSO) algorithm for solving MTSP and guarantee good quality solution in reasonable time for real-life problems. MSO is a metaheuristic optimization algorithm that is derived from the behavior of Meerkat in finding the shortest path. The implementation is done using many dataset from TSPLIB95. The results demonstrate that MSO in most results is better than another results that compared in average cost that means the MSO superior to other results of MTSP.


2021 ◽  
Vol 2 (1) ◽  
pp. 43-48
Author(s):  
Aswandi ◽  
Sugiarto Cokrowibowo ◽  
Arnita Irianti

Garbage pick-ups performed by two or more people must have a route in their pickup. However, it is not easy to model the route of the pickup that each point must be passed and each point is only passed once. Now, the method to create a route has been done a lot, one of the most commonly used methods is the creation of routes using the Traveling Salesman Problem method. Traveling Salesman Problem is a method to determine the route of a series of cities where each city is only traversed once. In this study, the shortest route modeling was conducted using Multiple Traveling Salesman Problem and Genetic Algorithm to find out the shortest route model that can be passed in garbage pickup. In this study, datasets will be used as pick-up points to then be programmed to model the shortest routes that can be traveled. The application of Multiple Traveling Salesman Problem method using Genetic Algorithm shows success to model garbage pickup route based on existing dataset, by setting the parameters of 100 generations and 100 population and 4 salesmen obtained 90% of the best individual opportunities obtained with the best individual fitness value of 0.05209. The test was conducted using BlackBox testing and the results of this test that the functionality on the system is 100% appropriate.


2015 ◽  
Vol 3 ◽  
pp. 043-049 ◽  
Author(s):  
Martin Macík ◽  
Jozef Štefunko

High level of competition on postal market increases demands on reliability of postal services and lowering of transport costs. This can be achieved by optimizing the routing of postal vehicles. The article discusses the possibilities of such optimization by using graph theory. It describes basic methods of finding optimal routes using a graph. The approach, used in this article, assesses the possibility of applying meta-heuristic solution to the traveling salesman problem in the postal sector. Simulation of methods described has been applied on a regional postal network. Results showed that the software used proves to be sufficiently functional for the field of postal transport networks.


2021 ◽  
Vol 16 (2) ◽  
pp. 173-184
Author(s):  
Y.D. Wang ◽  
X.C. Lu ◽  
J.R. Shen

The multiple traveling salesman problem (mTSP) is an extension of the traveling salesman problem (TSP), which has wider applications in real life than the traveling salesman problem such as transportation and delivery, task allocation, etc. In this paper, an improved genetic algorithm (VNS-GA) that uses polar coordinate classification to generate the initial solutions is proposed. It integrates the variable neighbourhood algorithm to solve the multiple objective optimization of the mTSP with workload balance. Aiming to workload balance, the first design of this paper is about generating initial solutions based on the polar coordinate classification. Then a distance comparison insertion operator is designed as a neighbourhood action for allocating paths in a targeted manner. Finally, the neighbourhood descent process in the variable neighbourhood algorithm is fused into the genetic algorithm for the expansion of search space. The improved algorithm is tested on the TSPLIB standard data set and compared with other genetic algorithms. The results show that the improved genetic algorithm can increase computational efficiency and obtain a better solution for workload balance and this algorithm has wild applications in real life such as multiple robots task allocation, school bus routing problem and other optimization problems.


2007 ◽  
Vol 5 (1) ◽  
pp. 1-9
Author(s):  
Paulo Henrique Siqueira ◽  
Sérgio Scheer ◽  
Maria Teresinha Arns Steiner

Symmetry ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 48
Author(s):  
Jin Zhang ◽  
Li Hong ◽  
Qing Liu

The whale optimization algorithm is a new type of swarm intelligence bionic optimization algorithm, which has achieved good optimization results in solving continuous optimization problems. However, it has less application in discrete optimization problems. A variable neighborhood discrete whale optimization algorithm for the traveling salesman problem (TSP) is studied in this paper. The discrete code is designed first, and then the adaptive weight, Gaussian disturbance, and variable neighborhood search strategy are introduced, so that the population diversity and the global search ability of the algorithm are improved. The proposed algorithm is tested by 12 classic problems of the Traveling Salesman Problem Library (TSPLIB). Experiment results show that the proposed algorithm has better optimization performance and higher efficiency compared with other popular algorithms and relevant literature.


Sign in / Sign up

Export Citation Format

Share Document