scholarly journals An analogue of the thom isomorphism for crossed products of a C∗ algebra by an action of R

1981 ◽  
Vol 39 (1) ◽  
pp. 31-55 ◽  
Author(s):  
A Connes
1995 ◽  
Vol 52 (2) ◽  
pp. 317-326 ◽  
Author(s):  
Marcelo Laca

The spectral C*-algebra of the discrete product systems of H.T. Dinh is shown to be a twisted semigroup crossed product whenever the product system has a twisted unit. The covariant representations of the corresponding dynamical system are always faithful, implying the simplicity of these crossed products; an application of a recent theorem of G.J. Murphy gives their nuclearity. Furthermore, a semigroup of endomorphisms of B(H) having an intertwining projective semigroup of isometries can be extended to a group of automorphisms of a larger Type I factor.


2015 ◽  
Vol 58 (4) ◽  
pp. 846-857
Author(s):  
S. Sundar

AbstractLet A ∊ Mn(ℝ) be an invertible matrix. Consider the semi-direct product ℝn ⋊ ℤ where the action of ℤ on ℝn is induced by the left multiplication by A. Let (α, τ) be a strongly continuous action of ℝn ⋊ ℤ on a C*-algebra B where α is a strongly continuous action of ℝn and τ is an automorphism. The map τ induces a map . We show that, at the K-theory level, τ commutes with the Connes–Thom map if det(A) > 0 and anticommutes if det(A) < 0. As an application, we recompute the K-groups of the Cuntz–Li algebra associated with an integer dilation matrix.


2020 ◽  
Vol 126 (3) ◽  
pp. 540-558
Author(s):  
Jacopo Bassi

Dynamical conditions that guarantee stability for discrete transformation group $C^*$-algebras are determined. The results are applied to the case of some discrete subgroups of $\operatorname{SL} (2,\mathbb{R} )$ acting on the punctured plane by means of matrix multiplication of vectors. In the case of cocompact subgroups, further properties of such crossed products are deduced from properties of the $C^*$-algebra associated to the horocycle flow on the corresponding compact homogeneous space of $\operatorname{SL} (2,\mathbb{R} )$.


2014 ◽  
Vol 25 (02) ◽  
pp. 1450010 ◽  
Author(s):  
JIAJIE HUA ◽  
YAN WU

Let X be a Cantor set, and let A be a unital separable simple amenable [Formula: see text]-stable C*-algebra with rationally tracial rank no more than one, which satisfies the Universal Coefficient Theorem (UCT). We use C(X, A) to denote the algebra of all continuous functions from X to A. Let α be an automorphism on C(X, A). Suppose that C(X, A) is α-simple, [α|1⊗A] = [ id |1⊗A] in KL(1 ⊗ A, C(X, A)), τ(α(1 ⊗ a)) = τ(1 ⊗ a) for all τ ∈ T(C(X, A)) and all a ∈ A, and [Formula: see text] for all u ∈ U(A) (where α‡ and id‡ are homomorphisms from U(C(X, A))/CU(C(X, A)) → U(C(X, A))/CU(C(X, A)) induced by α and id, respectively, and where CU(C(X, A)) is the closure of the subgroup generated by commutators of the unitary group U(C(X, A)) of C(X, A)), then the corresponding crossed product C(X, A) ⋊α ℤ is a unital simple [Formula: see text]-stable C*-algebra with rationally tracial rank no more than one, which satisfies the UCT. Let X be a Cantor set and 𝕋 be the circle. Let γ : X × 𝕋n → X × 𝕋n be a minimal homeomorphism. It is proved that, as long as the cocycles are rotations, the tracial rank of the corresponding crossed product C*-algebra is always no more than one.


2009 ◽  
Vol 20 (10) ◽  
pp. 1233-1261 ◽  
Author(s):  
YASUHIKO SATO

Let G be an inductive limit of finite cyclic groups, and A be a unital simple projectionless C*-algebra with K1(A) ≅ G and a unique tracial state, as constructed based on dimension drop algebras by Jiang and Su. First, we show that any two aperiodic elements in Aut (A)/ WInn (A) are conjugate, where WInn (A) means the subgroup of Aut (A) consisting of automorphisms which are inner in the tracial representation.In the second part of this paper, we consider a class of unital simple C*-algebras with a unique tracial state which contains the class of unital simple A𝕋-algebras of real rank zero with a unique tracial state. This class is closed under inductive limits and crossed products by actions of ℤ with the Rohlin property. Let A be a TAF-algebra in this class. We show that for any automorphism α of A there exists an automorphism ᾶ of A with the Rohlin property such that ᾶ and α are asymptotically unitarily equivalent. For the proof we use an aperiodic automorphism of the Jiang-Su algebra.


2006 ◽  
Vol 17 (01) ◽  
pp. 65-96 ◽  
Author(s):  
EZIO VASSELLI

We study C*-algebra endomorphims which are special in a weaker sense with respect to the notion introduced by Doplicher and Roberts. We assign to such endomorphisms a geometrical invariant, representing a cohomological obstruction for them to be special in the usual sense. Moreover, we construct the crossed product of a C*-algebra by the action of the dual of a (nonabelian, noncompact) group of vector bundle automorphisms. These crossed products supply a class of examples for such generalized special endomorphisms.


1990 ◽  
Vol 32 (3) ◽  
pp. 377-379 ◽  
Author(s):  
Pere Ara

Let R be a semiprime ring (possibly without 1). The symmetric ring of quotients of R is defined as the set of equivalence classes of essentially defined double centralizers (ƒ, g) on R; see [1], [8]. So, by definition, ƒ is a left R-module homomorphism from an essential ideal I of R into R, g is a right R-module homomorphism from an essential ideal J of R into R, and they satisfy the balanced condition ƒ(x)y = xg(y) for x ∈ Iand y ∈ J. This ring was used by Kharchenko in his investigations on the Galois theory of semiprime rings [4] and it is also a useful tool for the study of crossed products of prime rings [7]. We denote the symmetric ring of quotients of a semiprime ring R by Q(R).


2015 ◽  
Vol 26 (03) ◽  
pp. 1550022 ◽  
Author(s):  
Bartosz Kosma Kwaśniewski

We consider an extendible endomorphism α of a C*-algebra A. We associate to it a canonical C*-dynamical system (B, β) that extends (A, α) and is "reversible" in the sense that the endomorphism β admits a unique regular transfer operator β⁎. The theory for (B, β) is analogous to the theory of classic crossed products by automorphisms, and the key idea is to describe the counterparts of classic notions for (B, β) in terms of the initial system (A, α). We apply this idea to study the ideal structure of a non-unital version of the crossed product C*(A, α, J) introduced recently by the author and A. V. Lebedev. This crossed product depends on the choice of an ideal J in (ker α)⊥, and if J = ( ker α)⊥ it is a modification of Stacey's crossed product that works well with non-injective α's. We provide descriptions of the lattices of ideals in C*(A, α, J) consisting of gauge-invariant ideals and ideals generated by their intersection with A. We investigate conditions under which these lattices coincide with the set of all ideals in C*(A, α, J). In particular, we obtain simplicity criteria that besides minimality of the action require either outerness of powers of α or pointwise quasinilpotence of α.


Sign in / Sign up

Export Citation Format

Share Document