Improved cardiac output and peripheral blood flow after correcting neonatal hyperviscosity

1985 ◽  
Vol 110 (3) ◽  
pp. 707
Author(s):  
Sydney Swetnam ◽  
Dale Alverson ◽  
Steven M. Yabek ◽  
Pam Angelus ◽  
Connie Bakstrom ◽  
...  
PEDIATRICS ◽  
1985 ◽  
Vol 76 (6) ◽  
pp. 918-921
Author(s):  
Frans J. Walther ◽  
Paul Y. K. Wu ◽  
Bijan Siassi

Phototherapy is known to increase peripheral blood flow in neonates, but information on the associated cardiovascular effects is not available. Using pulsed Doppler echocardiography we evaluated cardiac output and stroke volume in 12 preterm and 13 term neonates during and after phototherapy. We concomitantly measured arterial limb blood flow by strain gauge plethysmography and skin blood flow by photoplethysmography. Cardiac output decreased by 6% due to reduced stroke volume during phototherapy, whereas total limb blood flow and skin blood flow increased by 38% and 41%, respectively. Peripheral blood flow increments tended to be higher in the preterm than in the term infants. The reduced stroke volume during phototherapy may be an expression of reduced activity of the newborn during phototherapy. For healthy neonates the reduction in cardiac output is minimal, but for sick infants with reduced cardiac output, this reduction may further aggravate the decrease in tissue perfusion.


2017 ◽  
Vol 29 (06) ◽  
pp. 1750041
Author(s):  
Pranali Choudhari ◽  
M. S. Panse

The ability to accurately measure Cardiac Output (CO) is important in clinical medicine as it helps in improving diagnosis of abnormalities and appropriate disease management. In spite of being an important vital parameter, it is still missing from the screens of the bedside monitors employed today. This could be due to the invasiveness of the method or the discomfort in the measurement. Invasive methods are most accurate but can be best suited for the intensive care units (ICUs) and surgeries, but for bedside measurement these methods add an unnecessary risk to the life of the patient. The existing non-invasive method employed for CO measurement is the thoracic bioimpedance method, which is risky for patients with cardiovascular diseases and inaccurate for patients with extra vascular lung water. This paper presents a novel method of CO measurement from the peripheral blood flow, which fairly overcomes the disadvantages of the existing method. The impedance pulse has been acquired across the wrist, instead of the thorax. A new stroke volume equation has been modeled by carrying out the finite element simulation of the blood flow and multiple variable regression to incorporate the patient specific factors. The stroke volume thus obtained has been validated for 57 subjects.


2007 ◽  
Vol 113 (11) ◽  
pp. 449-457 ◽  
Author(s):  
Julian M. Stewart ◽  
Indu Taneja ◽  
Marvin S. Medow

Altered peripheral haemodynamics, decreased cardiac output, decreased blood volume and increased AngII (angiotensin II) have been reported in POTS (postural tachycardia syndrome). Recent findings indicate that BMI (body mass index) may be reduced. In the present study, we investigated the hypothesis that reduced BMI is associated with haemodynamic abnormalities in POTS and that this is related to AngII. We studied 52 patients with POTS, aged 14–29 years, compared with 36 control subjects, aged 14–27 years. BMI was not significantly reduced on average in the POTS patients, but was reduced in patients with decreased peripheral blood flow. POTS patients were then subdivided on the basis of BMI, and supine haemodynamics were measured. There was no difference in blood volume or cardiac output once BMI or body mass were accounted for. When POTS patients with BMI <50th percentile were compared with controls, calf blood flow [1.63±0.31 compared with 3.58±0.67 ml−1·min−1·(100 ml of tissue)−1] and maximum venous capacity (3.87±0.32 compared with 4.98±0.36 ml/100 ml of tissue) were decreased, whereas arterial resistance [56±0.5 compared with 30±4 mmHg·ml−1·min−1·(100 ml of tissue)−1] and venous resistance [1.23±0.17 compared with 0.79±0.11 mmHg·ml−1·min−1·(100 ml of tissue)−1] were increased. Similar findings were also observed when POTS patients with BMI <50th percentile were compared with POTS patients with BMI >50th percentile. There was no relationship between blood flow, resistance or maximum venous capacity with BMI in control subjects. BMI was inversely related to plasma AngII concentrations in those POTS patients with decreased peripheral blood flow, consistent with cachectic properties of the octapeptide. Patients with low-flow POTS had decreased body mass, but decreased body mass alone cannot account for findings of peripheral vasoconstriction. In conclusion, the findings suggest that reduced body mass relates to increased plasma AngII.


Sign in / Sign up

Export Citation Format

Share Document