Quantitation of single- and double-strand DNA breaks in vitro and in vivo

1986 ◽  
Vol 154 (2) ◽  
pp. 485-491 ◽  
Author(s):  
Ron Kohen ◽  
Moshe Szyf ◽  
Mordechai Chevion
2003 ◽  
Vol 88 (11) ◽  
pp. 1763-1771 ◽  
Author(s):  
H Mekid ◽  
O Tounekti ◽  
A Spatz ◽  
M Cemazar ◽  
F Z El Kebir ◽  
...  

2021 ◽  
Author(s):  
Joyce H. Lee ◽  
Eric P. Mosher ◽  
Young-Sam Lee ◽  
Namandjé N. Bumpus ◽  
James M. Berger

SUMMARYTopoisomerase II (topo II) is essential for disentangling newly replicated chromosomes. DNA unlinking involves the physical passage of one DNA duplex through another and depends on the transient formation of double-strand DNA breaks, a step exploited by frontline chemotherapeutics to kill cancer cells. Although anti-topo II drugs are efficacious, they also elicit cytotoxic side effects in normal cells; insights into how topo II is regulated in different cellular contexts is essential to improve their targeted use. Using chemical fractionation and mass spectrometry, we have discovered that topo II is subject to metabolic control through the TCA cycle. We show that TCA metabolites stimulate topo II activity in vitro and that levels of TCA flux modulate cellular sensitivity to anti-topo II drugs in vivo. Our works reveals an unanticipated connection between the control of DNA topology and cellular metabolism, a finding with important ramifications for the clinical use of anti-topo II therapies.


2008 ◽  
Vol 205 (11) ◽  
pp. 2465-2472 ◽  
Author(s):  
Sophie Péron ◽  
Ayse Metin ◽  
Pauline Gardès ◽  
Marie-Alexandra Alyanakian ◽  
Eamonn Sheridan ◽  
...  

Immunoglobulin (Ig) class switch recombination (CSR) deficiencies are rare primary immunodeficiencies characterized by the lack of switched isotype (IgG/IgA/IgE) production. In some cases, CSR deficiencies can be associated with abnormal somatic hypermutation. Analysis of CSR deficiencies has helped reveal the key functions of CSR-triggering molecules, i.e., CD40L, CD40, and effector molecules such as activation-induced cytidine deaminase and uracil N-glycosylase. We report a new form of B cell–intrinsic CSR deficiency found in three patients with deleterious, homozygous mutations in the gene encoding the PMS2 component of the mismatch repair machinery. CSR was found partially defective in vivo and markedly impaired in vitro. It is characterized by the defective occurrence of double-strand DNA breaks (DSBs) in switch regions and abnormal formation of switch junctions. This observation strongly suggests a role for PMS2 in CSR-induced DSB generation.


2020 ◽  
Author(s):  
Manon Oliero ◽  
Annie Calvé ◽  
Gabriela Fragoso ◽  
Thibault Cuisiniere ◽  
Roy Hajjar ◽  
...  

Abstract Background: Colibactin is a genotoxin that induces double-strand DNA breaks and is produced by Escherichia coli strains harboring the pks island. Human and animal studies have shown that colibactin-producing gut bacteria promote carcinogenesis and enhance the progression of colorectal cancer through cellular senescence and chromosomal abnormalities. In this study, we investigated the impact of prebiotics on the genotoxicity of colibactin-producing E. coli strains Nissle 1917 and NC101. Methods: Bacteria were grown in medium supplemented with 20, 30 and 40 mg/mL of prebiotics inulin or galacto-oligosaccharide, and with or without 5 µM, 25 µM and 125 µM of iron sulfate. Colibactin expression was assessed by luciferase reporter assay for the clbA gene, essential for colibactin production, in E. coli Nissle 1917 and by RT-PCR in E. coli NC101. The human epithelial colorectal adenocarcinoma cell line, Caco-2, was used to assess colibactin-induced megalocytosis by methylene blue binding assay and genotoxicity by γ-H2AX immunofluorescence analysis. Results: Inulin and galacto-oligosaccharide enhanced the expression of clbA in pks+ E. coli. However, the addition of 125 µM of iron sulfate inhibited the expression of clbA triggered by oligosaccharides. In the presence of either oligosaccharide, E. coli NC101 increased dysplasia and double-strand DNA breaks in Caco-2 cells compared to untreated cells. Conclusion: Our results suggest that, in vitro, prebiotic oligosaccharides exacerbate DNA damage induced by colibactin-producing bacteria. Further studies are necessary to establish whether these results are reproducible in vivo.


2020 ◽  
Vol 3 (Supplement_1) ◽  
pp. i11-i11
Author(s):  
Weihua Zhou ◽  
Yangyang Yao ◽  
Andrew Scott ◽  
Kari Wilder-Romans ◽  
Joseph Dresser ◽  
...  

Abstract Intratumoral genomic heterogeneity in glioblastoma (GBM) is a barrier to overcoming radiation (RT) resistance. To discover genotype-independent mediators of RT resistance, we correlated RT resistance with the concentration of approximately 700 metabolites across 23 GBM cell lines. Purine metabolites, especially those containing the base guanine, were most correlated with RT resistance. Similarly, increased abundance of tumor purines was associated with decreased survival in GBM patients treated with RT. This relationship is causal. Purine supplementation protected RT-sensitive GBMs from RT and promoted the repair of RT-induced double strand DNA breaks (DSBs). In vitro and in vivo stable isotope tracing confirmed that GBM cell lines and orthotopic patient-derived xenografts primarily generated purines through the de novo synthetic pathway. RT treatment further increased de novo purine synthesis in GBM through signaling via the DNA damage response. Inhibition of de novo GTP synthesis with mycophenolic acid (MPA) sensitized multiple GBM cell lines and neurospheres to RT by slowing the repair of RT-induced DSBs. MPA-induced radiosensitization was GTP-dependent as it was rescued by nucleoside supplementation. Modulating pyrimidine metabolism affected neither RT resistance nor DSB repair, suggesting these GTP-specific effects are due to active signaling rather than its ability to act as a physical substrate for DNA repair and candidate signaling molecules have been identified. These results were recapitulated in vivo with mycophenolate mofetil (MMF), the orally bioavailable FDA-approved prodrug of MPA. MMF potentiated RT efficacy, reduced tumor guanylates and slowed the repair of RT-induced DSBs across multiple models. Because de novo purine synthesis is activated by many of the oncogenic alterations that drive GBM, its inhibition is a promising genotype-independent strategy to overcome GBM RT resistance. We have now begun a clinical trial to determine whether combining MMF and RT is safe and potentially efficacious in patients with GBM.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Thorsten Mosler ◽  
Francesca Conte ◽  
Gabriel M. C. Longo ◽  
Ivan Mikicic ◽  
Nastasja Kreim ◽  
...  

AbstractTranscription poses a threat to genomic stability through the formation of R-loops that can obstruct progression of replication forks. R-loops are three-stranded nucleic acid structures formed by an RNA–DNA hybrid with a displaced non-template DNA strand. We developed RNA–DNA Proximity Proteomics to map the R-loop proximal proteome of human cells using quantitative mass spectrometry. We implicate different cellular proteins in R-loop regulation and identify a role of the tumor suppressor DDX41 in opposing R-loop and double strand DNA break accumulation in promoters. DDX41 is enriched in promoter regions in vivo, and can unwind RNA–DNA hybrids in vitro. R-loop accumulation upon loss of DDX41 is accompanied with replication stress, an increase in the formation of double strand DNA breaks and transcriptome changes associated with the inflammatory response. Germline loss-of-function mutations in DDX41 lead to predisposition to acute myeloid leukemia in adulthood. We propose that R-loop accumulation and genomic instability-associated inflammatory response may contribute to the development of familial AML with mutated DDX41.


Sign in / Sign up

Export Citation Format

Share Document