Inhibition of rat liver microsomal lipid peroxidation by N-acyldehydroalanines: An in vitro comparative study

1989 ◽  
Vol 273 (2) ◽  
pp. 339-346 ◽  
Author(s):  
Pedro Buc-Calderon ◽  
Marcel Roberfroid
1984 ◽  
Vol 220 (1) ◽  
pp. 243-252 ◽  
Author(s):  
K H Tan ◽  
D J Meyer ◽  
J Belin ◽  
B Ketterer

Lipid peroxidation in vitro in rat liver microsomes (microsomal fractions) initiated by ADP-Fe3+ and NADPH was inhibited by the rat liver soluble supernatant fraction. When this fraction was subjected to frontal-elution chromatography, most, if not all, of its inhibitory activity could be accounted for by the combined effects of two fractions, one containing Se-dependent glutathione (GSH) peroxidase activity and the other the GSH transferases. In the latter fraction, GSH transferases B and AA, but not GSH transferases A and C, possessed inhibitory activity. GSH transferase B replaced the soluble supernatant fraction as an effective inhibitor of lipid peroxidation in vitro. If the microsomes were pretreated with the phospholipase A2 inhibitor p-bromophenacyl bromide, neither the soluble supernatant fraction nor GSH transferase B inhibited lipid peroxidation in vitro. Similarly, if all microsomal enzymes were heat-inactivated and lipid peroxidation was initiated with FeCl3/sodium ascorbate neither the soluble supernatant fraction nor GSH transferase B caused inhibition, but in both cases inhibition could be restored by the addition of porcine pancreatic phospholipase A2 to the incubation. It is concluded that the inhibition of microsomal lipid peroxidation in vitro requires the consecutive action of phospholipase A2, which releases fatty acyl hydroperoxides from peroxidized phospholipids, and GSH peroxidases, which reduce them. The GSH peroxidases involved are the Se-dependent GSH peroxidase and the Se-independent GSH peroxidases GSH transferases B and AA.


1984 ◽  
Vol 50 (3) ◽  
pp. 361-366 ◽  
Author(s):  
W.M. Tom ◽  
L.Y.Y. Fong ◽  
D.Y.H. Woo ◽  
Vitoon Prasongwatana ◽  
T.R.C. Boyde

1986 ◽  
Vol 61 (2) ◽  
pp. 785-790 ◽  
Author(s):  
D. P. Franco ◽  
S. G. Jenkinson

Lung microsomal membranes that contain the redox active components associated with the mixed-function oxidase system can be peroxidized in vitro. To investigate the characteristics of rat lung microsomal lipid peroxidation, we performed experiments using a variety of peroxidation initiators and microsomes obtained from normal and vitamin E-deficient rats. We found that lung microsomes obtained from normal rats are peroxidized much less than liver microsomes obtained from the same animals. Only initiation systems using very high concentrations of ferrous iron produced any significant peroxidation of normal rat lung microsomes. Lung microsomes obtained from vitamin E-deficient rats were found to be much more susceptible to peroxidation. Glutathione (GSH) was effective in inhibiting peroxidation when lung microsomes from normal rats were peroxidized. GSH was not effective in decreasing peroxidation when microsomes from vitamin E-deficient rats were peroxidized in the same system. We conclude that both GSH and vitamin E protect lung microsomal membranes from peroxidation. Glutathione protection appears to be related to the presence of a sulfhydryl group.


2001 ◽  
Vol 77 (1) ◽  
pp. 31-35 ◽  
Author(s):  
E. Czinner ◽  
K. Hagymási ◽  
A. Blázovics ◽  
Á. Kéry ◽  
É. Szőke ◽  
...  

2006 ◽  
Vol 3 (3) ◽  
pp. 329-338 ◽  
Author(s):  
Predrag Ljubuncic ◽  
Suha Dakwar ◽  
Irina Portnaya ◽  
Uri Cogan ◽  
Hassan Azaizeh ◽  
...  

Teucrium poliumL. (Lamiaceae) (RDC 1117) is a medicinal plant whose species have been used for over 2000 years in traditional medicine due to its diuretic, diaphoretic, tonic, antipyretic, antispasmodic and cholagogic properties. The therapeutic benefit of medicinal plants is often attributed to their antioxidant properties. We previously reported that an aqueous extract of the leaves and stems of this plant could inhibit iron-induced lipid peroxidation in rat liver homogenate at concentrations that were not toxic to cultured hepatic cells. Others have reported that organic extracts of the aerial components of this plant could inhibit oxidative processes. Against this background, we felt further investigation on the antioxidant action of the extract ofT. poliumprepared according to traditional Arab medicine was warranted. Accordingly, we assessed (i) its ability to inhibit (a) oxidation of β-carotene, (b) 2,2′-azobis(2-amidinopropan) dihydrochloride (AAPH)-induced plasma oxidation and (c) iron-induced lipid peroxidation in rat liver homogenates; (ii) to scavenge the superoxide ($${\hbox{ O }}_{2}^{\bullet -}$$) radical and the hydroxyl radical (OH•); (iii) its effects on the enzyme xanthine oxidase activity; (iv) its capacity to bind iron; and (v) its effect on cell glutathione (GSH) homeostasis in cultured Hep G2 cells. We found that the extract (i) inhibited (a) oxidation of β-carotene, (b) AAPH-induced plasma oxidation (c) Fe2+-induced lipid peroxidation in rat liver homogenates (IC50 = 7 ± 2 μg ml−1); (ii) scavenged $${\hbox{ O }}_{2}^{\bullet -}$$(IC50 = 12 ± 3 μg ml−1) and OH• (IC50 = 66 ± 20 μg ml−1); (iii) binds iron (IC50 = 79 ± 17 μg ml−1); and (iv) tended to increase intracellular GSH levels resulting in a decrease in the GSSG/GSH ratio. These results demonstrate that the extract prepared from theT. poliumpossesses antioxidant activityin vitro. Further investigations are needed to verify whether this antioxidant effect occursin vivo.


1978 ◽  
Vol 98 (6) ◽  
pp. 757-763 ◽  
Author(s):  
MASAKI SATO ◽  
YUZO AMIKURA ◽  
TACHIO AIMOTO ◽  
RYOHEI KIMURA ◽  
TOSHIRO MURATA

Sign in / Sign up

Export Citation Format

Share Document